Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach
- URL: http://arxiv.org/abs/2007.10109v1
- Date: Fri, 17 Jul 2020 06:03:32 GMT
- Title: Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach
- Authors: Yun Yuan, Qinzheng Wang, Xianfeng Terry Yang
- Abstract summary: This study presents a microscopic traffic model that can capture randomness and measure errors in the real world.
Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets.
- Score: 1.6242924916178285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling stochastic traffic behaviors at the microscopic level, such as
car-following and lane-changing, is a crucial task to understand the
interactions between individual vehicles in traffic streams. Leveraging a
recently developed theory named physics regularized Gaussian process (PRGP),
this study presents a stochastic microscopic traffic model that can capture the
randomness and measure errors in the real world. Physical knowledge from
classical car-following models is converted as physics regularizers, in the
form of shadow Gaussian process (GP), of a multivariate PRGP for improving the
modeling accuracy. More specifically, a Bayesian inference algorithm is
developed to estimate the mean and kernel of GPs, and an enhanced latent force
model is formulated to encode physical knowledge into stochastic processes.
Also, based on the posterior regularization inference framework, an efficient
stochastic optimization algorithm is developed to maximize the evidence
lower-bound of the system likelihood. To evaluate the performance of the
proposed models, this study conducts empirical studies on real-world vehicle
trajectories from the NGSIM dataset. Since one unique feature of the proposed
framework is the capability of capturing both car-following and lane-changing
behaviors with one single model, numerical tests are carried out with two
separated datasets, one contains lane-changing maneuvers and the other doesn't.
The results show the proposed method outperforms the previous influential
methods in estimation precision.
Related papers
- Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction [24.94160059351764]
Most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step.
We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories.
Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance.
arXiv Detail & Related papers (2022-10-20T02:24:27Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
This study presents a new modeling framework, named physics regularized Gaussian process (PRGP)
This novel approach can encode physics models, i.e., classical traffic flow models, into the Gaussian process architecture and so as to regularize the Machine Learning training process.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset that is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-07-14T17:27:23Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Real-Time Model Calibration with Deep Reinforcement Learning [4.707841918805165]
We propose a novel framework for inference of model parameters based on reinforcement learning.
The proposed methodology is demonstrated and evaluated on two model-based diagnostics test cases.
arXiv Detail & Related papers (2020-06-07T00:11:42Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
This study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models into the machine learning architecture.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-02-06T17:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.