IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction
- URL: http://arxiv.org/abs/2210.10965v1
- Date: Thu, 20 Oct 2022 02:24:27 GMT
- Title: IDM-Follower: A Model-Informed Deep Learning Method for Long-Sequence
Car-Following Trajectory Prediction
- Authors: Yilin Wang and Yiheng Feng
- Abstract summary: Most car-following models are generative and only consider the inputs of the speed, position, and acceleration of the last time step.
We implement a novel structure with two independent encoders and a self-attention decoder that could sequentially predict the following trajectories.
Numerical experiments with multiple settings on simulation and NGSIM datasets show that the IDM-Follower can improve the prediction performance.
- Score: 24.94160059351764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model-based and learning-based methods are two major types of methodologies
to model car following behaviors. Model-based methods describe the
car-following behaviors with explicit mathematical equations, while
learning-based methods focus on getting a mapping between inputs and outputs.
Both types of methods have advantages and weaknesses. Meanwhile, most
car-following models are generative and only consider the inputs of the speed,
position, and acceleration of the last time step. To address these issues, this
study proposes a novel framework called IDM-Follower that can generate a
sequence of following vehicle trajectory by a recurrent autoencoder informed by
a physical car-following model, the Intelligent Driving Model (IDM).We
implement a novel structure with two independent encoders and a self-attention
decoder that could sequentially predict the following trajectories. A loss
function considering the discrepancies between predictions and labeled data
integrated with discrepancies from model-based predictions is implemented to
update the neural network parameters. Numerical experiments with multiple
settings on simulation and NGSIM datasets show that the IDM-Follower can
improve the prediction performance compared to the model-based or
learning-based methods alone. Analysis on different noise levels also shows
good robustness of the model.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
This research investigates the performance of various motion models in combination with numerical solvers for the prediction task.
The study shows that simpler models, such as low-order integrator models, are preferred over more complex, e.g., kinematic models, to achieve accurate predictions.
arXiv Detail & Related papers (2023-04-11T10:15:20Z) - An active inference model of car following: Advantages and applications [6.905724739762358]
Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies.
Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability.
We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability.
arXiv Detail & Related papers (2023-03-27T13:39:26Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Vehicle Behavior Prediction and Generalization Using Imbalanced Learning
Techniques [1.3381749415517017]
This paper proposes an interaction-aware prediction model consisting of an LSTM autoencoder and SVM classifier.
Evaluations show that the method enhances model performance, resulting in improved classification accuracy.
arXiv Detail & Related papers (2021-09-22T11:21:20Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
We present momentum pseudo-labeling (MPL) as a simple yet effective strategy for semi-supervised speech recognition.
MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method.
The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios.
arXiv Detail & Related papers (2021-06-16T16:24:55Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
This study presents a microscopic traffic model that can capture randomness and measure errors in the real world.
Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets.
arXiv Detail & Related papers (2020-07-17T06:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.