Towards robust sensing for Autonomous Vehicles: An adversarial
perspective
- URL: http://arxiv.org/abs/2007.10115v1
- Date: Tue, 14 Jul 2020 05:25:15 GMT
- Title: Towards robust sensing for Autonomous Vehicles: An adversarial
perspective
- Authors: Apostolos Modas, Ricardo Sanchez-Matilla, Pascal Frossard, Andrea
Cavallaro
- Abstract summary: It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
- Score: 82.83630604517249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Vehicles rely on accurate and robust sensor observations for
safety critical decision-making in a variety of conditions. Fundamental
building blocks of such systems are sensors and classifiers that process
ultrasound, RADAR, GPS, LiDAR and camera signals~\cite{Khan2018}. It is of
primary importance that the resulting decisions are robust to perturbations,
which can take the form of different types of nuisances and data
transformations, and can even be adversarial perturbations (APs). Adversarial
perturbations are purposefully crafted alterations of the environment or of the
sensory measurements, with the objective of attacking and defeating the
autonomous systems. A careful evaluation of the vulnerabilities of their
sensing system(s) is necessary in order to build and deploy safer systems in
the fast-evolving domain of AVs. To this end, we survey the emerging field of
sensing in adversarial settings: after reviewing adversarial attacks on sensing
modalities for autonomous systems, we discuss countermeasures and present
future research directions.
Related papers
- Navigating Threats: A Survey of Physical Adversarial Attacks on LiDAR Perception Systems in Autonomous Vehicles [4.4538254463902645]
LiDAR systems are vulnerable to adversarial attacks, which pose significant challenges to the safety and robustness of autonomous vehicles.
This survey presents a review of the current research landscape on physical adversarial attacks targeting LiDAR-based perception systems.
We identify critical challenges and highlight gaps in existing attacks for LiDAR-based systems.
arXiv Detail & Related papers (2024-09-30T15:50:36Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
This study investigates whether specific GPS signals can easily mislead the multi-agent perception system.
We introduce textscAdvGPS, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system.
Our experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods.
arXiv Detail & Related papers (2024-01-30T23:13:41Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Spatial-Temporal Anomaly Detection for Sensor Attacks in Autonomous
Vehicles [1.7188280334580195]
Time-of-flight (ToF) distance measurement devices are vulnerable to spoofing, triggering and false data injection attacks.
We propose a spatial-temporal anomaly detection model textitSTAnDS which incorporates a residual error spatial detector, with a time-based expected change detection.
arXiv Detail & Related papers (2022-12-15T12:21:27Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - Robustness Enhancement of Object Detection in Advanced Driver Assistance
Systems (ADAS) [0.0]
The proposed system includes two main components: (1) a compact one-stage object detector which is expected to be able to perform at a comparable accuracy compared to state-of-the-art object detectors, and (2) an environmental condition detector that helps to send a warning signal to the cloud in case the self-driving car needs human actions due to the significance of the situation.
arXiv Detail & Related papers (2021-05-04T15:42:43Z) - Modeling Perception Errors towards Robust Decision Making in Autonomous
Vehicles [11.503090828741191]
We propose a simulation-based methodology towards answering the question: is a perception subsystem sufficient for the decision making subsystem to make robust, safe decisions?
We show how to analyze the impact of different kinds of sensing and perception errors on the behavior of the autonomous system.
arXiv Detail & Related papers (2020-01-31T08:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.