Navigating Threats: A Survey of Physical Adversarial Attacks on LiDAR Perception Systems in Autonomous Vehicles
- URL: http://arxiv.org/abs/2409.20426v1
- Date: Mon, 30 Sep 2024 15:50:36 GMT
- Title: Navigating Threats: A Survey of Physical Adversarial Attacks on LiDAR Perception Systems in Autonomous Vehicles
- Authors: Amira Guesmi, Muhammad Shafique,
- Abstract summary: LiDAR systems are vulnerable to adversarial attacks, which pose significant challenges to the safety and robustness of autonomous vehicles.
This survey presents a review of the current research landscape on physical adversarial attacks targeting LiDAR-based perception systems.
We identify critical challenges and highlight gaps in existing attacks for LiDAR-based systems.
- Score: 4.4538254463902645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles (AVs) rely heavily on LiDAR (Light Detection and Ranging) systems for accurate perception and navigation, providing high-resolution 3D environmental data that is crucial for object detection and classification. However, LiDAR systems are vulnerable to adversarial attacks, which pose significant challenges to the safety and robustness of AVs. This survey presents a thorough review of the current research landscape on physical adversarial attacks targeting LiDAR-based perception systems, covering both single-modality and multi-modality contexts. We categorize and analyze various attack types, including spoofing and physical adversarial object attacks, detailing their methodologies, impacts, and potential real-world implications. Through detailed case studies and analyses, we identify critical challenges and highlight gaps in existing attacks for LiDAR-based systems. Additionally, we propose future research directions to enhance the security and resilience of these systems, ultimately contributing to the safer deployment of autonomous vehicles.
Related papers
- A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles [0.0]
This survey focuses on the intersection of Adversarial Machine Learning (AML) and autonomous systems.
We comprehensively explore the threat landscape, encompassing cyber-attacks on sensors and adversarial perturbations.
This paper endeavors to present a concise overview of the challenges and advances in securing autonomous driving systems against adversarial threats.
arXiv Detail & Related papers (2024-11-21T01:26:52Z) - A Survey and Evaluation of Adversarial Attacks for Object Detection [11.48212060875543]
Deep learning models excel in various computer vision tasks but are susceptible to adversarial examples-subtle perturbations in input data that lead to incorrect predictions.
This vulnerability poses significant risks in safety-critical applications such as autonomous vehicles, security surveillance, and aircraft health monitoring.
arXiv Detail & Related papers (2024-08-04T05:22:08Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
A growing integration of vehicles with external networks has led to a surge in attacks targeting their Controller Area Network (CAN) internal bus.
As a countermeasure, various Intrusion Detection Systems (IDSs) have been suggested in the literature to prevent and mitigate these threats.
Most of these systems rely on data-driven approaches such as Machine Learning (ML) and Deep Learning (DL) models.
In this paper, we present CANEDERLI, a novel framework for securing CAN-based IDSs.
arXiv Detail & Related papers (2024-04-06T14:54:11Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and
Defenses [13.161104978510943]
This survey provides a thorough analysis of different attacks that may jeopardize autonomous driving systems.
It covers adversarial attacks for various deep learning models and attacks in both physical and cyber context.
Some promising research directions are suggested in order to improve deep learning-based autonomous driving safety.
arXiv Detail & Related papers (2021-04-05T06:31:47Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.