Bound states of an ultracold atom interacting with a set of stationary
impurities
- URL: http://arxiv.org/abs/2007.10282v1
- Date: Mon, 20 Jul 2020 17:09:28 GMT
- Title: Bound states of an ultracold atom interacting with a set of stationary
impurities
- Authors: Marta Sroczy\'nska and Zbigniew Idziaszek
- Abstract summary: We consider two types of atom-impurity interaction: (i) zero-range potential represented by regularized delta, (ii) more realistic polarization potential.
For the former we obtain analytical results for energies of bound states.
For the latter we perform numerical calculations based on the application of finite element method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this manuscript we analyse properties of bound states of an atom
interacting with a set of static impurities. We begin with the simplest system
of a single atom interacting with two static impurities. We consider two types
of atom-impurity interaction: (i) zero-range potential represented by
regularized delta, (ii) more realistic polarization potential, representing
long-range part of the atom-ion interaction. For the former we obtain
analytical results for energies of bound states. For the latter we perform
numerical calculations based on the application of finite element method. Then,
we move to the case of a single atom interacting with one-dimensional (1D)
infinite chain of static ions. Such a setup resembles Kronig-Penney model of a
1D crystalline solid, where energy spectrum exhibits band structure behaviour.
For this system, we derive analytical results for the band structure of bound
states assuming regularized delta interaction, and perform numerical
calculations, considering polarization potential to model atom-impurity
interaction. Both approaches agree quite well when separation between
impurities is much larger than characteristic range of the interaction
potential.
Related papers
- Cosmic string influence on a 2D hydrogen atom and its relationship with
the Rytova-Keldysh logarithmic approximation in semiconductors [0.0]
A two-dimensional hydrogen atom offers a promising alternative for describing the quantum interaction between an electron and a proton in the presence of a straight cosmic string.
We calculate the eigenenergies, probability distribution function, and expected values for the hydrogen atom with logarithmic potential under the influence of the topological defect.
Our model leads to an interesting analogy with excitons in a two-dimensional monolayer semiconductor located within a specific semiconductor region.
arXiv Detail & Related papers (2023-11-23T18:31:31Z) - Trapped ion-mediated interactions between two distant trapped atoms [0.0]
We show that when two largely separated atoms interact with a trapped ion via Rydberg excitation of the atoms, the ion-mediated interaction exceeds the direct atom-atom interaction by several orders of magnitude.
Since the motion of the atoms is much slower than the motion of the ion, we resort to Born-Oppenheimer approximation to calculate the ion-mediated adiabatic potential.
arXiv Detail & Related papers (2023-10-08T10:06:20Z) - A functional approach to the Van der Waals interaction [0.0]
We use a functional integral approach to evaluate the quantum interaction energy between two neutral atoms.
We show that the resulting expression for the energy becomes the Van der Waals interaction energy at the first non-trivial order.
We also explore the opposite, strong-coupling limit, which yields a result for the interaction energy as well as a threshold for the existence of a vacuum decay probability.
arXiv Detail & Related papers (2023-02-01T19:14:28Z) - Theory for Coulomb scattering of trions in 2D materials [19.444636864515726]
We develop a theoretical description of Coulomb interactions between trions (charged excitons) that define a nonlinear optical response in doped two-dimensional semiconductors.
We find that the considered scattering gives significant contribution to the optical nonlinearity in monolayers of transition metal dichalcogenides.
arXiv Detail & Related papers (2022-07-06T13:27:40Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Spectral properties of a three body atom-ion hybrid system [0.0]
We consider a hybrid atom-ion system consisting of a pair of bosons interacting with a single ion in a quasi-one-dimensional trapping geometry.
Building upon a model potential for the atom-ion interaction developed in earlier theoretical works, we investigate the behaviour of the low-energy eigenstates.
arXiv Detail & Related papers (2021-01-21T16:52:37Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Ionic polaron in a Bose-Einstein condensate [0.0]
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects.
We show that even in a relatively simple setup the competition of length scales gives rise to a highly correlated state.
Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
arXiv Detail & Related papers (2020-05-25T11:10:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.