Trapped ion-mediated interactions between two distant trapped atoms
- URL: http://arxiv.org/abs/2310.05101v1
- Date: Sun, 8 Oct 2023 10:06:20 GMT
- Title: Trapped ion-mediated interactions between two distant trapped atoms
- Authors: Subhra Mudli, Subhanka Mal, Anushree Dey, and Bimalendu Deb
- Abstract summary: We show that when two largely separated atoms interact with a trapped ion via Rydberg excitation of the atoms, the ion-mediated interaction exceeds the direct atom-atom interaction by several orders of magnitude.
Since the motion of the atoms is much slower than the motion of the ion, we resort to Born-Oppenheimer approximation to calculate the ion-mediated adiabatic potential.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We theoretically show that when two largely separated trapped atoms interact
with a trapped ion via Rydberg excitation of the atoms, the ion-mediated
interaction between the atoms exceeds the direct atom-atom interaction by
several orders of magnitude. Since the motion of the atoms is much slower than
the motion of the ion, we resort to Born-Oppenheimer approximation to calculate
the ion-mediated adiabatic potential. We also calculate the ion-mediated phonon
modes of the atoms that are separated by more than 10 micron. For cylindrical
geometry of the system and both the atoms being excited to the same Rydberg
state, the stretched and center-of-mass (COM) axial or transverse phonon modes
are found to be almost degenerate, while the phonon modes are non-degenerate
when one atom is in a Rydberg state and the other in the ground state. We
discuss the non-adiabatic effects in the system that give rise to a Gauge
structure and associated geometric phase in the system. This study may open a
new perspective in quantum computing and exploring molecular physics associated
with a conical intersection using an ion-atom hybrid architecture.
Related papers
- Ion-mediated interaction and controlled phase gate operation between two atomic qubits [0.0]
We show that when two atomic qubits in two largely separated optical tweezers interact with a single trapped ion through Rydberg excitation of the atoms, there exists an ion-mediated atom-atom interaction.
We employ this mediated interaction to demonstrate two-qubit control phase gate operation with 97% fidelity by addressing the individual atomic qubits with lasers.
arXiv Detail & Related papers (2024-09-16T04:49:11Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Charged ultralong-range Rydberg trimers [0.0]
Long-range ion-Rydberg molecules can be divided into two families of states, which are characterised by their unique electronic structures.
We predict that in both cases these diatomic molecular states can bind additional ground state atoms lying within the orbit of the Rydberg electron.
The predicted trimer binding energies and excitation series are distinct enough to be observed using current experimental techniques.
arXiv Detail & Related papers (2022-11-24T14:48:27Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Spectral properties of a three body atom-ion hybrid system [0.0]
We consider a hybrid atom-ion system consisting of a pair of bosons interacting with a single ion in a quasi-one-dimensional trapping geometry.
Building upon a model potential for the atom-ion interaction developed in earlier theoretical works, we investigate the behaviour of the low-energy eigenstates.
arXiv Detail & Related papers (2021-01-21T16:52:37Z) - Improving Efficiency of Sympathetic Cooling in Atom-Ion and Atom-Atom
Confined Collisions [0.0]
We propose a new way for sympathetic cooling of ions in an electromagnetic Paul trap.
It implies the use for this purpose of cold buffer atoms in the region of atom-ion confinement-induced resonance.
We show that the destructive effect of ion micromotion on its sympathetic cooling can however be suppressed in the vicinity of the atom-ion CIR.
arXiv Detail & Related papers (2021-01-10T15:18:38Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Phonon-mediated spin-spin interactions between trapped Rydberg atoms [0.0]
We investigate the possibility of creating phonon-mediated spin-spin interactions between neutral atoms trapped in optical tweezers.
We show that these can be used to mediate effective spin-spin interactions or quantum logic gates between the atoms in analogy to schemes employed in trapped ions.
We find arbitrarily high fidelity for the coherent time evolution of the two-atom state even at non-zero temperature.
arXiv Detail & Related papers (2020-08-31T14:05:51Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.