論文の概要: NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural
Architecture Search
- arxiv url: http://arxiv.org/abs/2007.10396v1
- Date: Mon, 20 Jul 2020 18:30:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 10:12:43.064027
- Title: NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural
Architecture Search
- Title(参考訳): NSGANetV2:進化的多目的サロゲート支援ニューラルネットワーク探索
- Authors: Zhichao Lu and Kalyanmoy Deb and Erik Goodman and Wolfgang Banzhaf and
Vishnu Naresh Boddeti
- Abstract要約: 複数の競合対象下で競合するタスク固有モデルを生成するための効率的なNASアルゴリズムを提案する。
2つのサロゲートで構成され、1つはサンプル効率を改善するためにアーキテクチャレベルで、1つはスーパーネットを介して重量レベルで、勾配降下訓練効率を改善する。
提案手法の有効性と汎用性を6つの非標準データセットで示す。
- 参考スコア(独自算出の注目度): 22.848528877480796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an efficient NAS algorithm for generating
task-specific models that are competitive under multiple competing objectives.
It comprises of two surrogates, one at the architecture level to improve sample
efficiency and one at the weights level, through a supernet, to improve
gradient descent training efficiency. On standard benchmark datasets (C10,
C100, ImageNet), the resulting models, dubbed NSGANetV2, either match or
outperform models from existing approaches with the search being orders of
magnitude more sample efficient. Furthermore, we demonstrate the effectiveness
and versatility of the proposed method on six diverse non-standard datasets,
e.g. STL-10, Flowers102, Oxford Pets, FGVC Aircrafts etc. In all cases,
NSGANetV2s improve the state-of-the-art (under mobile setting), suggesting that
NAS can be a viable alternative to conventional transfer learning approaches in
handling diverse scenarios such as small-scale or fine-grained datasets. Code
is available at https://github.com/mikelzc1990/nsganetv2
- Abstract(参考訳): 本論文では,複数の競合対象下で競合するタスク固有モデルを生成するための効率的なNASアルゴリズムを提案する。
2つのサロゲートで構成され、1つはサンプル効率を改善するためにアーキテクチャレベルで、1つはスーパーネットを介して重量レベルで、勾配降下訓練効率を改善する。
標準ベンチマークデータセット(C10, C100, ImageNet)では、NSGANetV2と呼ばれる結果のモデルが既存のアプローチのモデルにマッチするか、あるいは性能が良くなり、検索の精度は桁違いに向上した。
さらに,stl-10,flowers102,oxford pets,fgvc aircraftsなど6種類の非標準データセットにおいて,提案手法の有効性と汎用性を示す。
すべてのケースにおいて、NSGANetV2は最先端(モバイル環境下で)を改善し、NASは小規模なデータセットやきめ細かなデータセットなどの多様なシナリオを扱う上で、従来の移行学習アプローチの代替となる可能性があることを示唆している。
コードはhttps://github.com/mikelzc1990/nsganetv2で入手できる。
関連論文リスト
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
本研究では拡散モデルに基づく新しい条件付きニューラルネットワーク生成(NAG)フレームワークDiffusionNAGを提案する。
具体的には、ニューラルネットワークを有向グラフとみなし、それらを生成するためのグラフ拡散モデルを提案する。
本研究では,2つの予測型NAS(Transferable NAS)とベイズ最適化(BO)に基づくNAS(Bayesian Optimization)の2つのシナリオにおいて,DiffusionNAGの有効性を検証する。
BOベースのアルゴリズムに統合されると、DiffusionNAGは既存のBOベースのNASアプローチ、特にImageNet 1Kデータセット上の大規模なMobileNetV3検索スペースよりも優れている。
論文 参考訳(メタデータ) (2023-05-26T13:58:18Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Accelerating Multi-Objective Neural Architecture Search by Random-Weight
Evaluation [24.44521525130034]
我々は,CNNの品質を定量化するために,RWE(Random-Weight Evaluation)と呼ばれる新しい性能評価指標を導入する。
RWEは最後の層のみをトレーニングし、残りの層をランダムに重み付けする。
提案手法は,2つの実世界の探索空間における最先端性能を持つ効率的なモデルの集合を求める。
論文 参考訳(メタデータ) (2021-10-08T06:35:20Z) - Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural
Architecture Search [15.454709248397208]
本研究は,多様な設計目的の下で実現可能な深層モデルを見つける方法に焦点を当てる。
オンライン分類器を訓練し、候補と構築された参照アーキテクチャとの優位性関係を予測する。
さまざまな目的や制約の下で、2Mから6Mまでの異なるモデルサイズを持つ多数のニューラルアーキテクチャを見つけます。
論文 参考訳(メタデータ) (2021-09-14T13:28:07Z) - Rapid Neural Architecture Search by Learning to Generate Graphs from
Datasets [42.993720854755736]
本稿では,データセットと事前学習ネットワークからなるデータベース上で1度トレーニングした,効率的なニューラルサーチ(NAS)フレームワークを提案する。
我々は,NAS-Bench 201の検索空間から,ImageNet-1Kのサブセットとアーキテクチャに基づいてメタ学習を行った。
論文 参考訳(メタデータ) (2021-07-02T06:33:59Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z) - Neural Architecture Transfer [20.86857986471351]
既存のアプローチでは、ハードウェアまたは目的のデプロイメント仕様の完全な検索が1つ必要である。
この制限を克服するために、ニューラルネットワーク転送(NAT)を提案する。
NATは、複数の競合する目標の下で競合するタスク固有のカスタムモデルを効率的に生成するように設計されている。
論文 参考訳(メタデータ) (2020-05-12T15:30:36Z) - DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning [135.27931587381596]
DDPNASと呼ばれる効率よく統一されたNASフレームワークを提案する。
検索空間は動的に切断され,その分布はいくつかのエポック毎に更新される。
提案した効率的なネットワーク生成手法により,与えられた制約に対する最適なニューラルネットワークアーキテクチャを直接取得する。
論文 参考訳(メタデータ) (2019-05-28T06:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。