Distributed Associative Memory Network with Memory Refreshing Loss
- URL: http://arxiv.org/abs/2007.10637v3
- Date: Fri, 27 Aug 2021 04:43:06 GMT
- Title: Distributed Associative Memory Network with Memory Refreshing Loss
- Authors: Taewon Park, Inchul Choi, Minho Lee
- Abstract summary: We introduce a novel Distributed Associative Memory architecture (DAM) with Memory Refreshing Loss (MRL)
Inspired by how the human brain works, our framework encodes data with distributed representation across multiple memory blocks.
MRL enables MANN to reinforce an association between input data and task objective by reproducing input data from stored memory contents.
- Score: 5.5792083698526405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent progress in memory augmented neural network (MANN) research,
associative memory networks with a single external memory still show limited
performance on complex relational reasoning tasks. Especially the content-based
addressable memory networks often fail to encode input data into rich enough
representation for relational reasoning and this limits the relation modeling
performance of MANN for long temporal sequence data. To address these problems,
here we introduce a novel Distributed Associative Memory architecture (DAM)
with Memory Refreshing Loss (MRL) which enhances the relation reasoning
performance of MANN. Inspired by how the human brain works, our framework
encodes data with distributed representation across multiple memory blocks and
repeatedly refreshes the contents for enhanced memorization similar to the
rehearsal process of the brain. For this procedure, we replace a single
external memory with a set of multiple smaller associative memory blocks and
update these sub-memory blocks simultaneously and independently for the
distributed representation of input data. Moreover, we propose MRL which
assists a task's target objective while learning relational information
existing in data. MRL enables MANN to reinforce an association between input
data and task objective by reproducing stochastically sampled input data from
stored memory contents. With this procedure, MANN further enriches the stored
representations with relational information. In experiments, we apply our
approaches to Differential Neural Computer (DNC), which is one of the
representative content-based addressing memory models and achieves the
state-of-the-art performance on both memorization and relational reasoning
tasks.
Related papers
- A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
We propose a PMI framework that consists of perception, memory and inference components.
The memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain extensive and complex relational knowledge and experience.
We apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets.
arXiv Detail & Related papers (2023-10-01T08:12:55Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - On the Relationship Between Variational Inference and Auto-Associative
Memory [68.8204255655161]
We study how different neural network approaches to variational inference can be applied in this framework.
We evaluate the obtained algorithms on the CIFAR10 and CLEVR image datasets and compare them with other associative memory models.
arXiv Detail & Related papers (2022-10-14T14:18:47Z) - Entropic Associative Memory for Manuscript Symbols [0.0]
Manuscript symbols can be stored, recognized and retrieved from an entropic digital memory that is associative and distributed but yet declarative.
We discuss the operational characteristics of the entropic associative memory for retrieving objects with both complete and incomplete information.
arXiv Detail & Related papers (2022-02-17T02:29:33Z) - Semantically Constrained Memory Allocation (SCMA) for Embedding in
Efficient Recommendation Systems [27.419109620575313]
A key challenge for deep learning models is to work with millions of categorical classes or tokens.
We propose a novel formulation of memory shared embedding, where memory is shared in proportion to the overlap in semantic information.
We demonstrate a significant reduction in the memory footprint while maintaining performance.
arXiv Detail & Related papers (2021-02-24T19:55:49Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
Episodic and semantic memory are critical components of the human memory model.
We develop a new principled Bayesian memory allocation scheme that bridges the gap between episodic and semantic memory.
We demonstrate that this allocation scheme improves performance in memory conditional image generation.
arXiv Detail & Related papers (2021-02-20T18:40:40Z) - Neural Storage: A New Paradigm of Elastic Memory [4.307341575886927]
Storage and retrieval of data in a computer memory plays a major role in system performance.
We introduce Neural Storage (NS), a brain-inspired learning memory paradigm that organizes the memory as a flexible neural memory network.
NS achieves an order of magnitude improvement in memory access performance for two representative applications.
arXiv Detail & Related papers (2021-01-07T19:19:25Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z) - Robust High-dimensional Memory-augmented Neural Networks [13.82206983716435]
Memory-augmented neural networks enhance neural networks with an explicit memory to overcome these issues.
Access to this explicit memory occurs via soft read and write operations involving every individual memory entry.
We propose a robust architecture that employs a computational memory unit as the explicit memory performing analog in-memory computation on high-dimensional (HD) vectors.
arXiv Detail & Related papers (2020-10-05T12:01:56Z) - Self-Attentive Associative Memory [69.40038844695917]
We propose to separate the storage of individual experiences (item memory) and their occurring relationships (relational memory)
We achieve competitive results with our proposed two-memory model in a diversity of machine learning tasks.
arXiv Detail & Related papers (2020-02-10T03:27:48Z) - Encoding-based Memory Modules for Recurrent Neural Networks [79.42778415729475]
We study the memorization subtask from the point of view of the design and training of recurrent neural networks.
We propose a new model, the Linear Memory Network, which features an encoding-based memorization component built with a linear autoencoder for sequences.
arXiv Detail & Related papers (2020-01-31T11:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.