Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents
- URL: http://arxiv.org/abs/2505.19549v1
- Date: Mon, 26 May 2025 06:13:07 GMT
- Title: Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents
- Authors: Derong Xu, Yi Wen, Pengyue Jia, Yingyi Zhang, wenlin zhang, Yichao Wang, Huifeng Guo, Ruiming Tang, Xiangyu Zhao, Enhong Chen, Tong Xu,
- Abstract summary: We propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval.<n>MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones.<n>Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks.
- Score: 73.77930932005354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.
Related papers
- Hierarchical Memory for High-Efficiency Long-Term Reasoning in LLM Agents [19.04968632268433]
We propose a hierarchical memory architecture for Large Language Model Agents (LLM Agents)<n>Each memory vector is embedded with a positional index encoding pointing to its semantically related sub-memories in the next layer.<n>During the reasoning phase, an index-based routing mechanism enables efficient, layer-by-layer retrieval without performing exhaustive similarity computations.
arXiv Detail & Related papers (2025-07-23T12:45:44Z) - MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
We introduce MEM1, an end-to-end reinforcement learning framework that enables agents to operate with constant memory across long multi-turn tasks.<n>At each turn, MEM1 updates a compact shared internal state that jointly supports memory consolidation and reasoning.<n>We show that MEM1-7B improves performance by 3.5x while reducing memory usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop QA task.
arXiv Detail & Related papers (2025-06-18T19:44:46Z) - Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory [0.5584627289325719]
Large Language Models (LLMs) have demonstrated remarkable prowess in generating contextually coherent responses.<n>But their fixed context windows pose fundamental challenges for maintaining consistency over prolonged multi-session dialogues.<n>We introduce Mem0, a scalable memory-centric architecture that addresses this issue by dynamically extracting, consolidating, and retrieving salient information from ongoing conversations.
arXiv Detail & Related papers (2025-04-28T01:46:35Z) - Cognitive Memory in Large Language Models [8.059261857307881]
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency.<n>It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures.
arXiv Detail & Related papers (2025-04-03T09:58:19Z) - In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents [70.12342024019044]
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information limits their effectiveness.<n>We propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections.<n>RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
arXiv Detail & Related papers (2025-03-11T04:15:52Z) - On Memory Construction and Retrieval for Personalized Conversational Agents [69.46887405020186]
We propose SeCom, a method that constructs the memory bank at segment level by introducing a conversation segmentation model.<n> Experimental results show that SeCom exhibits a significant performance advantage over baselines on long-term conversation benchmarks LOCOMO and Long-MT-Bench+.
arXiv Detail & Related papers (2025-02-08T14:28:36Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG)<n>We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results.<n>When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks.
arXiv Detail & Related papers (2024-07-16T18:09:21Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.<n>We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.