The Electromagnetic Balance Game: A Probabilistic Perspective
- URL: http://arxiv.org/abs/2007.10735v2
- Date: Sun, 26 Jul 2020 14:24:33 GMT
- Title: The Electromagnetic Balance Game: A Probabilistic Perspective
- Authors: Fangqi Li
- Abstract summary: Finding a counterfeit coin with the different weight from a set of visually identical coin using a balance is an intersting and inspiring question.
In this paper some variants of the balance game are dicussed, especially from a probabilistic perspective.
We focus on the predetermined setting, where the player has to arrange the strategy without observing the outcome of the balancing.
- Score: 3.096615629099617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding a counterfeit coin with the different weight from a set of visually
identical coin using a balance, usually a two-armed balance, known as the
balance question, is an intersting and inspiring question. Its variants involve
diversified toolkits including information theory, coding theory, optimization,
probabilistic theory, combinatorics and a lot of quick wits. In this paper some
variants of the balance game are dicussed, especially from a probabilistic
perspective. Unlike the gravity field setting, we adopt an electromagnetic
field, where tighter bounds for some variants of the balance game can be found.
We focus on the predetermined setting, where the player has to arrange the
strategy without observing the outcome of the balancing. The sufficient
condition for the balance to win is obtained by adopting a coding scheme. Apart
from designing a delicate encoding framework, we also propose and analyze the
performance of a completely randomized strategy. The optimal behavior of a
randomized player is derived. Then we rise the dishonest balance game, in which
the balance can adversely cheat the player. We present some elementary results
on the analysis of dishonest balance game using probabilistic method at length.
Its relationship with Shannon' s coding theorem in a noisy channel is also
revealed.
Related papers
- On Tractable $Φ$-Equilibria in Non-Concave Games [53.212133025684224]
Non-concave games introduce significant game-theoretic and optimization challenges.
We show that when $Phi$ is finite, there exists an efficient uncoupled learning algorithm that converges to the corresponding $Phi$-equilibria.
We also show that Online Gradient Descent can efficiently approximate $Phi$-equilibria in non-trivial regimes.
arXiv Detail & Related papers (2024-03-13T01:51:30Z) - A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning [53.83345471268163]
We investigate learning the equilibria in non-stationary multi-agent systems.
We show how to test for various types of equilibria by a black-box reduction to single-agent learning.
arXiv Detail & Related papers (2023-06-12T23:48:24Z) - Bayes correlated equilibria and no-regret dynamics [9.89901717499058]
This paper explores equilibrium concepts for Bayesian games, which are fundamental models of games with incomplete information.
We focus on communication equilibria, which can be realized by a mediator who gathers each player's private information and then sends correlated recommendations to the players.
We present an efficient algorithm for minimizing untruthful swap regret with a sublinear upper bound, which we prove to be tight up to a multiplicative constant.
arXiv Detail & Related papers (2023-04-11T06:22:51Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play.
This work shows that certain regularized equilibria do not possess the aforementioned non-correspondence problem.
Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games.
arXiv Detail & Related papers (2023-01-22T16:54:06Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
We develop the concepts of Mean-Field correlated and coarse-correlated equilibria.
We show that they can be efficiently learnt in emphall games, without requiring any additional assumption on the structure of the game.
arXiv Detail & Related papers (2022-08-22T08:31:46Z) - Safe Equilibrium [1.7132914341329848]
The standard game-theoretic solution concept, Nash equilibrium, assumes that all players behave rationally.
We propose a new solution concept called safe equilibrium that models opponents as behaving rationally with a specified probability.
We prove that a safe equilibrium exists in all strategic-form games, and prove that its computation is PPAD-hard.
arXiv Detail & Related papers (2022-01-12T01:45:51Z) - Multiplayer Performative Prediction: Learning in Decision-Dependent
Games [18.386569111954213]
This paper formulates a new game theoretic framework for multi-player performative prediction.
We focus on two distinct solution concepts, namely (i) performatively stable equilibria and (ii) Nash equilibria of the game.
We show that under mild assumptions, the performatively stable equilibria can be found efficiently by a variety of algorithms.
arXiv Detail & Related papers (2022-01-10T15:31:10Z) - Towards convergence to Nash equilibria in two-team zero-sum games [17.4461045395989]
Two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents.
We focus on the solution concept of Nash equilibria (NE)
We show that computing NE for this class of games is $textithard$ for the complexity class $mathrm$.
arXiv Detail & Related papers (2021-11-07T21:15:35Z) - Learning to Compute Approximate Nash Equilibrium for Normal-form Games [15.321036952379488]
We propose a general meta learning approach to computing approximate Nash equilibrium for finite $n$-player normal-form games.
Unlike existing solutions that approximate or learn a Nash equilibrium from scratch for each of the games, our meta solver directly constructs a mapping from a game utility matrix to a joint strategy profile.
arXiv Detail & Related papers (2021-08-17T07:06:46Z) - Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games [78.65798135008419]
It remains vastly open how to learn the Stackelberg equilibrium in general-sum games efficiently from samples.
This paper initiates the theoretical study of sample-efficient learning of the Stackelberg equilibrium in two-player turn-based general-sum games.
arXiv Detail & Related papers (2021-02-23T05:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.