Automated Detection and Forecasting of COVID-19 using Deep Learning
Techniques: A Review
- URL: http://arxiv.org/abs/2007.10785v7
- Date: Sun, 11 Feb 2024 00:17:15 GMT
- Title: Automated Detection and Forecasting of COVID-19 using Deep Learning
Techniques: A Review
- Authors: Afshin Shoeibi, Marjane Khodatars, Mahboobeh Jafari, Navid Ghassemi,
Delaram Sadeghi, Parisa Moridian, Ali Khadem, Roohallah Alizadehsani, Sadiq
Hussain, Assef Zare, Zahra Alizadeh Sani, Fahime Khozeimeh, Saeid Nahavandi,
U. Rajendra Acharya, Juan M. Gorriz
- Abstract summary: Coronavirus, or COVID-19, is a hazardous disease that has endangered the health of many people around the world by directly affecting the lungs.
X-Ray and computed tomography (CT) imaging modalities are widely used to obtain a fast and accurate medical diagnosis.
Deep learning (DL) networks have gained popularity recently compared to conventional machine learning (ML)
- Score: 10.153806948106684
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coronavirus, or COVID-19, is a hazardous disease that has endangered the
health of many people around the world by directly affecting the lungs.
COVID-19 is a medium-sized, coated virus with a single-stranded RNA, and also
has one of the largest RNA genomes and is approximately 120 nm. The X-Ray and
computed tomography (CT) imaging modalities are widely used to obtain a fast
and accurate medical diagnosis. Identifying COVID-19 from these medical images
is extremely challenging as it is time-consuming and prone to human errors.
Hence, artificial intelligence (AI) methodologies can be used to obtain
consistent high performance. Among the AI methods, deep learning (DL) networks
have gained popularity recently compared to conventional machine learning (ML).
Unlike ML, all stages of feature extraction, feature selection, and
classification are accomplished automatically in DL models. In this paper, a
complete survey of studies on the application of DL techniques for COVID-19
diagnostic and segmentation of lungs is discussed, concentrating on works that
used X-Ray and CT images. Additionally, a review of papers on the forecasting
of coronavirus prevalence in different parts of the world with DL is presented.
Lastly, the challenges faced in the detection of COVID-19 using DL techniques
and directions for future research are discussed.
Related papers
- COVID-19 Detection Based on Blood Test Parameters using Various Artificial Intelligence Methods [1.2408125305560274]
In 2019, the world faced a new challenge: a COVID-19 disease caused by the novel coronavirus, SARS-CoV-2.
This study aimed to differentiate COVID-19 patients from others using self-categorizing classifiers and employing various AI methods.
arXiv Detail & Related papers (2024-04-02T22:49:25Z) - Medical Imaging with Deep Learning for COVID- 19 Diagnosis: A
Comprehensive Review [1.7205106391379026]
The paper focuses on the application of deep learning (DL) models to medical imaging and drug discovery for managing COVID-19 disease.
We detail various medical imaging-based studies such as X-rays and computed tomography (CT) images along with DL methods for classifying COVID-19 affected versus pneumonia.
arXiv Detail & Related papers (2021-07-13T16:49:49Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate.
Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays.
In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) without the need for labels and training data.
arXiv Detail & Related papers (2020-10-06T15:58:09Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - A comparison of deep machine learning algorithms in COVID-19 disease
diagnosis [4.636229382827605]
The aim of the work is to use deep neural network models for solving the problem of image recognition.
In this work, x-ray images are used for the diagnosis of suspected COVID-19 patients using modern machine learning techniques.
arXiv Detail & Related papers (2020-08-25T10:51:54Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
arXiv Detail & Related papers (2020-04-30T03:13:40Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.