COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19
- URL: http://arxiv.org/abs/2005.01577v1
- Date: Thu, 30 Apr 2020 03:13:40 GMT
- Title: COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19
- Authors: Yifan Zhang, Shuaicheng Niu, Zhen Qiu, Ying Wei, Peilin Zhao, Jianhua
Yao, Junzhou Huang, Qingyao Wu, and Mingkui Tan
- Abstract summary: The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
- Score: 92.4955073477381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outbreak of novel coronavirus disease 2019 (COVID-19) has already
infected millions of people and is still rapidly spreading all over the globe.
Most COVID-19 patients suffer from lung infection, so one important diagnostic
method is to screen chest radiography images, e.g., X-Ray or CT images.
However, such examinations are time-consuming and labor-intensive, leading to
limited diagnostic efficiency. To solve this issue, AI-based technologies, such
as deep learning, have been used recently as effective computer-aided means to
improve diagnostic efficiency. However, one practical and critical difficulty
is the limited availability of annotated COVID-19 data, due to the prohibitive
annotation costs and urgent work of doctors to fight against the pandemic. This
makes the learning of deep diagnosis models very challenging. To address this,
motivated by that typical pneumonia has similar characteristics with COVID-19
and many pneumonia datasets are publicly available, we propose to conduct
domain knowledge adaptation from typical pneumonia to COVID-19. There are two
main challenges: 1) the discrepancy of data distributions between domains; 2)
the task difference between the diagnosis of typical pneumonia and COVID-19. To
address them, we propose a new deep domain adaptation method for COVID-19
diagnosis, namely COVID-DA. Specifically, we alleviate the domain discrepancy
via feature adversarial adaptation and handle the task difference issue via a
novel classifier separation scheme. In this way, COVID-DA is able to diagnose
COVID-19 effectively with only a small number of COVID-19 annotations.
Extensive experiments verify the effectiveness of COVID-DA and its great
potential for real-world applications.
Related papers
- Comparative Analysis of State-of-the-Art Deep Learning Models for
Detecting COVID-19 Lung Infection from Chest X-Ray Images [3.829821362301428]
This paper evaluates the applicability of the recent top ten state-of-the-art Deep Convolutional Neural Networks (CNNs) for automatically detecting COVID-19 infection using chest X-ray images.
Our trained models MobileNet, EfficentNet, and InceptionV3 achieved a classification average accuracy of 95%, 95%, and 94%, respectively.
arXiv Detail & Related papers (2022-07-01T02:23:23Z) - Challenges in COVID-19 Chest X-Ray Classification: Problematic Data or
Ineffective Approaches? [0.0]
deep learning to classify and detect COVID-19 infections from chest radiography images.
In this work, we investigate the challenges faced with creating reliable AI solutions from both the data and machine learning perspectives.
arXiv Detail & Related papers (2022-01-16T14:12:04Z) - COVID-19 Pneumonia and Influenza Pneumonia Detection Using Convolutional
Neural Networks [0.0]
We developed a computer solution to support vision in differentiating between COVID-19 pneumonia, influenza virus pneumonia, and normal biomarkers.
In its classification performance, the best performing model demonstrated a validation accuracy of 93% and an F1 score of 0.95.
arXiv Detail & Related papers (2021-12-14T01:59:25Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - COVIDX: Computer-aided diagnosis of Covid-19 and its severity prediction
with raw digital chest X-ray images [0.6767885381740952]
Coronavirus disease (COVID-19) is a contagious infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)
A chest X-ray (CXR) image can be used as an alternative modality to detect and diagnose the COVID-19.
We present an automatic COVID-19 diagnostic and severity prediction (COVIDX) system that uses deep feature maps from CXR images.
arXiv Detail & Related papers (2020-12-25T17:03:06Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.