論文の概要: Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks
- arxiv url: http://arxiv.org/abs/2007.10859v1
- Date: Tue, 21 Jul 2020 14:37:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 05:07:03.096977
- Title: Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks
- Title(参考訳): クロスアテンションネットワークを用いたマルチラベル胸部画像分類
- Authors: Congbo Ma, Hu Wang, Steven C.H. Hoi
- Abstract要約: 胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
- 参考スコア(独自算出の注目度): 65.37531731899837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated disease classification of radiology images has been emerging as a
promising technique to support clinical diagnosis and treatment planning.
Unlike generic image classification tasks, a real-world radiology image
classification task is significantly more challenging as it is far more
expensive to collect the training data where the labeled data is in nature
multi-label; and more seriously samples from easy classes often dominate;
training data is highly class-imbalanced problem exists in practice as well. To
overcome these challenges, in this paper, we propose a novel scheme of
Cross-Attention Networks (CAN) for automated thoracic disease classification
from chest x-ray images, which can effectively excavate more meaningful
representation from data to boost the performance through cross-attention by
only image-level annotations. We also design a new loss function that beyond
cross-entropy loss to help cross-attention process and is able to overcome the
imbalance between classes and easy-dominated samples within each class. The
proposed method achieves state-of-the-art results.
- Abstract(参考訳): 臨床診断と治療計画を支援する有望な技術として,放射線画像の自動分類が開発されている。
一般的な画像分類タスクとは異なり、ラベル付きデータが本質的にマルチラベルにあるトレーニングデータを集めるのがはるかに高価であるため、実世界の放射線学画像分類タスクははるかに困難である。
そこで本稿では,胸部x線画像から胸部疾患を自動的に分類するcross-attention network (can) を提案する。
また,クロスエントロピー損失以外にも,クラス間の不均衡を克服する新たな損失関数を設計した。
提案手法は最先端の結果を得る。
関連論文リスト
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
本稿では,ロバストな医用画像分類のためのグローバルおよびローカルな表現学習を用いた新しい協調学習パラダイムを提案する。
ノイズラベルフィルタを用いた自己アンサンブルモデルを用いて、クリーンでノイズの多いサンプルを効率的に選択する。
また,ネットワークを暗黙的に正規化してノイズの多いサンプルを利用するための,グローバルかつ局所的な表現学習手法を設計する。
論文 参考訳(メタデータ) (2022-05-10T07:50:08Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
Weakly-Supervised Generative Adversarial Networks (WSGAN) と呼ばれる新しい医用画像分類アルゴリズムを提案する。
WSGANは、ラベルのない少数の実画像のみを使用して、偽画像やマスク画像を生成し、トレーニングセットのサンプルサイズを拡大する。
ラベル付きデータやラベルなしデータの少ない使用により,WSGANは比較的高い学習性能が得られることを示す。
論文 参考訳(メタデータ) (2021-11-29T15:38:48Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Improving Medical Annotation Quality to Decrease Labeling Burden Using
Stratified Noisy Cross-Validation [3.690031561736533]
医用画像の診断における多様性は十分に確立されており、トレーニングにおける多様性と医療ラベルの課題への注意がこの問題を悪化させる可能性がある。
Noisy Cross-Validationはトレーニングデータを半分に分割し、コンピュータビジョンタスクの低品質ラベルを特定する。
本稿では, SNCV (Stratified Noisy Cross-Validation) について紹介する。
論文 参考訳(メタデータ) (2020-09-22T23:32:59Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。