論文の概要: Connecting Embeddings for Knowledge Graph Entity Typing
- arxiv url: http://arxiv.org/abs/2007.10873v1
- Date: Tue, 21 Jul 2020 15:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 05:22:54.337717
- Title: Connecting Embeddings for Knowledge Graph Entity Typing
- Title(参考訳): 知識グラフエンティティ型付けのための埋め込み接続
- Authors: Yu Zhao, Anxiang Zhang, Ruobing Xie, Kang Liu, Xiaojie Wang
- Abstract要約: 知識グラフ(KG)エンティティタイピングは、KGに欠落する可能性のあるエンティティタイプのインスタンスを推測することを目的としている。
我々は,既存のエンティティ型アサーションから局所型付け知識とKGからのグローバル三重知識を併用して学習した,KGエンティティ型付けのための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 22.617375045752084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph (KG) entity typing aims at inferring possible missing entity
type instances in KG, which is a very significant but still under-explored
subtask of knowledge graph completion. In this paper, we propose a novel
approach for KG entity typing which is trained by jointly utilizing local
typing knowledge from existing entity type assertions and global triple
knowledge from KGs. Specifically, we present two distinct knowledge-driven
effective mechanisms of entity type inference. Accordingly, we build two novel
embedding models to realize the mechanisms. Afterward, a joint model with them
is used to infer missing entity type instances, which favors inferences that
agree with both entity type instances and triple knowledge in KGs. Experimental
results on two real-world datasets (Freebase and YAGO) demonstrate the
effectiveness of our proposed mechanisms and models for improving KG entity
typing. The source code and data of this paper can be obtained from:
https://github.com/ Adam1679/ConnectE
- Abstract(参考訳): 知識グラフ(KG)エンティティタイピングは、知識グラフ補完の非常に重要なサブタスクであるが、まだ探索されていないKGのエンティティタイプインスタンスを推測することを目的としている。
本稿では,既存のエンティティ型アサーションからの局所型付け知識とKGからのグローバル三重知識を併用して学習した,KGエンティティ型付けのための新しいアプローチを提案する。
具体的には、エンティティ型推論の2つの異なる知識駆動効果機構を示す。
そこで我々は,その機構を実現するために2つの新しい埋め込みモデルを構築した。
その後、それらとジョイントモデルを使用してエンティティタイプインスタンスの欠落を推測し、エンティティタイプインスタンスとkgの3重知識の両方に一致する推論を好む。
2つの実世界のデータセット(freebaseとyago)の実験結果は、提案するメカニズムとモデルがkgエンティティタイピングを改善する効果を示している。
この論文のソースコードとデータは、https://github.com/Adam1679/ConnectEから取得できます。
関連論文リスト
- Seed-Guided Fine-Grained Entity Typing in Science and Engineering
Domains [51.02035914828596]
科学・工学分野において,シード誘導型細粒度エンティティタイピングの課題について検討する。
まず、ラベルのないコーパスから各タイプのエンティティを抽出し、弱い監視力を高めるSETypeを提案する。
そして、リッチなエンティティをラベルなしのテキストにマッチさせ、擬似ラベル付きサンプルを取得し、見知らぬ型と見えない型の両方に推論できるテキストエンテリメントモデルを訓練する。
論文 参考訳(メタデータ) (2024-01-23T22:36:03Z) - Entity Type Prediction Leveraging Graph Walks and Entity Descriptions [4.147346416230273]
textitGRANDは、RDF2vecの異なるグラフウォーク戦略とテキストエンティティ記述を利用したエンティティ型付けの新しいアプローチである。
提案手法は,細粒度クラスと粗粒度クラスの両方において,KGにおけるエンティティ型付けのためのベンチマークデータセットDBpediaとFIGERのベースラインアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-07-28T13:56:55Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
実証的な観察では、頭と尾のエンティティが同じ関係で結ばれている場合、しばしば同様の意味的属性を共有する。
我々は、textittextbfrelational prototype entityと呼ばれる仮想ノードのセットを導入する新しいアプローチを提案する。
エンティティの埋め込みを、関連するプロトタイプの埋め込みに近づけることで、私たちのアプローチは、エンティティのグローバルな意味的類似性を効果的に促進できる。
論文 参考訳(メタデータ) (2022-06-16T09:25:33Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision(KRISSBERT$)は400万のUMLSエンティティのためのユニバーサルエンティティリンカーである。
提案手法はゼロショット法と少数ショット法を仮定し,利用可能であればエンティティ記述やゴールドレファレンスラベルを簡単に組み込むことができる。
ラベル付き情報を一切使わずに400万のUMLSエンティティのためのユニバーサルエンティティリンカである$tt KRISSBERT$を生成する。
論文 参考訳(メタデータ) (2021-12-15T05:05:12Z) - Context-aware Entity Typing in Knowledge Graphs [12.181416235996302]
知識グラフエンティティタイピングは、知識グラフにおけるエンティティの欠落したタイプを推測することを目的としている。
本稿では,エンティティのコンテキスト情報を利用した新しい手法を提案する。
実世界の2つのKG実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-09-16T13:59:27Z) - KI-BERT: Infusing Knowledge Context for Better Language and Domain
Understanding [0.0]
概念的および曖昧な実体に対する知識グラフから知識コンテキストをトランスフォーマーアーキテクチャに基づくモデルに注入する手法を提案する。
私たちの新しい技術プロジェクト知識グラフは、同質ベクトル空間に埋め込み、エンティティのための新しいトークンタイプ、エンティティの位置IDの整列、および選択的注意メカニズムを導入します。
私たちはBERTをベースラインモデルとし、ConceptNetとWordNetから知識コンテキストを注入して「KnowledgeInfused BERT」を実装します。
論文 参考訳(メタデータ) (2021-04-09T16:15:31Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - AutoETER: Automated Entity Type Representation for Knowledge Graph
Embedding [40.900070190077024]
我々は、Entity TypE Representation(AutoETER)を用いた新しい知識グラフ埋め込み(KGE)フレームワークを開発した。
我々のアプローチは、すべての関係パターンと複雑な関係をモデル化し、推測することができる。
4つのデータセットの実験は、リンク予測タスクにおける最先端のベースラインと比較して、我々のモデルの優れた性能を示している。
論文 参考訳(メタデータ) (2020-09-25T04:27:35Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
本稿では,人間の読みやすいエンティティ表現を作成し,箱から高パフォーマンスを実現する手法を提案する。
我々の表現は、微粒な実体型に対する後続確率に対応するベクトルである。
特定のドメインに対して,学習に基づく方法で,型セットのサイズを縮小できることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:58:03Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Entity Type Prediction in Knowledge Graphs using Embeddings [2.7528170226206443]
オープンナレッジグラフ(DBpedia、Wikidata、YAGOなど)は、データマイニングと情報検索の分野における多様なアプリケーションのバックボーンとして認識されている。
これらのKGのほとんどは、スナップショットからの自動情報抽出またはユーザーが提供する情報蓄積によって作成されるか、ウィキペディアを用いて作成される。
これらのKGの型情報は、しばしばうるさい、不完全、不正確である。
KG埋め込みを用いたエンティティタイピングのためのマルチラベル分類手法を提案する。
論文 参考訳(メタデータ) (2020-04-28T17:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。