Estimating crop yields with remote sensing and deep learning
- URL: http://arxiv.org/abs/2007.10882v1
- Date: Tue, 21 Jul 2020 15:09:11 GMT
- Title: Estimating crop yields with remote sensing and deep learning
- Authors: Renato Luiz de Freitas Cunha, Bruno Silva
- Abstract summary: We present a deep learning model able to perform pre-season and in-season predictions for five different crops.
Our model uses crop calendars, easy-to-obtain remote sensing data and weather forecast information to provide accurate yield estimates.
- Score: 0.2492060267829796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing the accuracy of crop yield estimates may allow improvements in the
whole crop production chain, allowing farmers to better plan for harvest, and
for insurers to better understand risks of production, to name a few
advantages. To perform their predictions, most current machine learning models
use NDVI data, which can be hard to use, due to the presence of clouds and
their shadows in acquired images, and due to the absence of reliable crop masks
for large areas, especially in developing countries. In this paper, we present
a deep learning model able to perform pre-season and in-season predictions for
five different crops. Our model uses crop calendars, easy-to-obtain remote
sensing data and weather forecast information to provide accurate yield
estimates.
Related papers
- Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
We focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany.
Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps.
For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions.
arXiv Detail & Related papers (2024-07-11T08:23:46Z) - An Open and Large-Scale Dataset for Multi-Modal Climate Change-aware Crop Yield Predictions [20.44172558372343]
CropNet dataset is the first terabyte-sized, publicly available, and multi-modal dataset specifically targeting climate change-aware crop yield predictions.
CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR, and USDA Cropd dataset, for over 2200 U.S. counties spanning 6 years.
arXiv Detail & Related papers (2024-06-10T07:54:56Z) - Generative weather for improved crop model simulations [0.0]
We propose a new method to construct generative models for long-term weather forecasts.
Results show significant improvement from the conventional method.
For individual crop modellers to start applying the method to their problems, technical details are carefully explained.
arXiv Detail & Related papers (2024-03-31T02:03:28Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Extreme Gradient Boosting for Yield Estimation compared with Deep
Learning Approaches [0.0]
We propose a pipeline to process remote sensing images into feature-based representations that allow the employment of Extreme Gradient Boosting (XGBoost) for yield prediction.
A comparative evaluation of soybean yield prediction within the United States shows promising prediction accuracies compared to state-of-the-art yield prediction systems based on Deep Learning.
arXiv Detail & Related papers (2022-08-26T12:48:18Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - YieldNet: A Convolutional Neural Network for Simultaneous Corn and
Soybean Yield Prediction Based on Remote Sensing Data [14.312926581466852]
We propose a new model called YieldNet that predicts yield of multiple crops and concurrently considers the interaction between multiple crop's yield.
Results demonstrate that our proposed method accurately predicts yield from one to four months before the harvest, and is competitive to other state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-05T22:09:07Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.