Long-term drought prediction using deep neural networks based on geospatial weather data
- URL: http://arxiv.org/abs/2309.06212v6
- Date: Fri, 12 Jul 2024 16:05:50 GMT
- Title: Long-term drought prediction using deep neural networks based on geospatial weather data
- Authors: Alexander Marusov, Vsevolod Grabar, Yury Maximov, Nazar Sotiriadi, Alexander Bulkin, Alexey Zaytsev,
- Abstract summary: High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
- Score: 75.38539438000072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Data Assimilation with Machine Learning Surrogate Models: A Case Study with FourCastNet [10.773673764125439]
This paper investigates online weather prediction using machine learning surrogates supplemented with partial and noisy observations.
We empirically demonstrate and theoretically justify that, despite the long-time instability of the surrogates, filtering estimates can remain accurate in the long-time horizon.
arXiv Detail & Related papers (2024-05-21T20:06:12Z) - Wind Power Prediction across Different Locations using Deep Domain Adaptive Learning [0.0]
Accurate prediction of wind power is essential for the grid integration of this intermittent renewable source.
A prediction model that learns from the data of a particular climatic region can suffer from being less robust.
A deep neural network (DNN) based domain adaptive approach is proposed to counter this drawback.
The proposed approach demonstrates higher accuracy ranging from 6.14% to even 28.44% compared to the traditional non-adaptive method.
arXiv Detail & Related papers (2024-05-18T05:57:52Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Addressing Deep Learning Model Uncertainty in Long-Range Climate
Forecasting with Late Fusion [2.951502707659703]
We propose a late fusion approach that systematically combines the predictions from multiple models to reduce the expected errors of the fused results.
We also propose a network architecture with the novel denormalization layer to gain the benefits of data normalization without actually normalizing the data.
The experimental results on long-range 2m temperature forecasting show that the framework outperforms the 30-year climate normals, and the accuracy can be improved by increasing the number of models.
arXiv Detail & Related papers (2021-12-10T00:00:09Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.