論文の概要: Improving compute efficacy frontiers with SliceOut
- arxiv url: http://arxiv.org/abs/2007.10909v2
- Date: Wed, 31 Mar 2021 23:06:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 04:11:49.293082
- Title: Improving compute efficacy frontiers with SliceOut
- Title(参考訳): SliceOutによる計算効率のフロンティアの改善
- Authors: Pascal Notin, Aidan N. Gomez, Joanna Yoo, Yarin Gal
- Abstract要約: SliceOut - 最終テスト精度に影響を与えることなく、ディープラーニングモデルを高速にトレーニングするためのドロップアウトインスパイアされたスキームだ。
テスト時に、SliceOutをオフにすると、テストの正確性を保持する一連のアーキテクチャに暗黙のアンサンブルが実行される。
これにより、大規模な計算ワークロード全体の処理が高速化され、結果として生じるエネルギー消費とCO2エミッションが大幅に削減される。
- 参考スコア(独自算出の注目度): 31.864949424541344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pushing forward the compute efficacy frontier in deep learning is critical
for tasks that require frequent model re-training or workloads that entail
training a large number of models. We introduce SliceOut -- a dropout-inspired
scheme designed to take advantage of GPU memory layout to train deep learning
models faster without impacting final test accuracy. By dropping contiguous
sets of units at random, our method realises training speedups through (1) fast
memory access and matrix multiplication of smaller tensors, and (2) memory
savings by avoiding allocating memory to zero units in weight gradients and
activations. At test time, turning off SliceOut performs an implicit ensembling
across a linear number of architectures that preserves test accuracy. We
demonstrate 10-40% speedups and memory reduction with Wide ResNets,
EfficientNets, and Transformer models, with minimal to no loss in accuracy.
This leads to faster processing of large computational workloads overall, and
significantly reduce the resulting energy consumption and CO2emissions.
- Abstract(参考訳): ディープラーニングにおける計算効率のフロンティアを推し進めることは、頻繁なモデル再トレーニングを必要とするタスクや、多数のモデルのトレーニングを必要とするワークロードにとって重要なことです。
SliceOutはGPUメモリレイアウトを活用して、最終的なテスト精度に影響を与えることなく、ディープラーニングモデルを高速にトレーニングする、ドロップアウトインスパイアされたスキームです。
本手法は,(1)高速メモリアクセスと小さいテンソルの行列乗算によるトレーニングの高速化,(2)重み勾配やアクティベーションにおいて,メモリをゼロ単位に割り当てることを避けてメモリ節約を実現する。
テスト時にスライスアウトをオフにすると、テストの正確性を維持する線形数のアーキテクチャにまたがる暗黙のセンスリングが実行される。
また、Wide ResNets、EfficientNets、Transformerモデルで10-40%の高速化とメモリ削減を実現した。
これにより、大規模な計算ワークロード全体の処理が高速化され、結果として生じるエネルギー消費とCO2エミッションが大幅に削減される。
関連論文リスト
- Block Selective Reprogramming for On-device Training of Vision Transformers [12.118303034660531]
本稿では,事前学習したモデルのブロック全体のごく一部のみを微調整するブロック選択型再プログラミング(BSR)を提案する。
既存の代替手法と比較して、トレーニングメモリを最大1.4倍、計算コストを最大2倍に削減する。
論文 参考訳(メタデータ) (2024-03-25T08:41:01Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - Rediscovering Hashed Random Projections for Efficient Quantization of
Contextualized Sentence Embeddings [113.38884267189871]
エッジデバイス上でのトレーニングと推論は、しばしば計算上の制限のために効率的なセットアップを必要とする。
データ表現の事前計算とサーバへのキャッシュにより、エッジデバイスの広範な計算が軽減される。
ランダムな超平面射影を用いた単純かつ効果的な手法を提案する。
組込みは, 浮動小数点の94%-99%を保持できる様々な英語およびドイツ語の文分類タスクにおいて, トレーニングモデルに有効であることを示す。
論文 参考訳(メタデータ) (2023-03-13T10:53:00Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - On-Device Training Under 256KB Memory [62.95579393237751]
本稿では,256KBのメモリでデバイス上でのトレーニングを可能にするアルゴリズム・システム協調設計フレームワークを提案する。
私たちのフレームワークは256KBと1MBのFlashで畳み込みニューラルネットワークのデバイス上での小さなトレーニングを可能にする最初のソリューションです。
論文 参考訳(メタデータ) (2022-06-30T17:59:08Z) - Online Convolutional Re-parameterization [51.97831675242173]
2段階のパイプラインであるオンライン畳み込み再パラメータ化(OREPA)は、複雑なトレーニング時間ブロックを単一の畳み込みに絞ることで、巨大なトレーニングオーバーヘッドを低減することを目的としている。
最先端のre-paramモデルと比較して、OREPAはトレーニング時間のメモリコストを約70%削減し、トレーニング速度を約2倍向上させることができる。
また、オブジェクト検出とセマンティックセグメンテーションの実験を行い、下流タスクに一貫した改善を示す。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
本稿では,トランスフォーマーのためのメモリ節約トレーニングフレームワークであるMesaを紹介する。
Mesaは、フォワードパス中に正確なアクティベーションを使用し、低精度のアクティベーションを格納することで、トレーニング中のメモリ消費を減らす。
ImageNet、CIFAR-100、ADE20Kの実験は、Mesaがトレーニング中にメモリフットプリントの半分を削減できることを示した。
論文 参考訳(メタデータ) (2021-11-22T11:23:01Z) - Layered gradient accumulation and modular pipeline parallelism: fast and
efficient training of large language models [0.0]
分散トレーニングのさまざまな構成について、可能な限り最短のトレーニング時間を分析します。
本稿では,最短トレーニング時間を半減する2つの新しい手法,テキスト層勾配蓄積法とテキストモジュールパイプライン並列化法を提案する。
論文 参考訳(メタデータ) (2021-06-04T19:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。