Instance-aware Self-supervised Learning for Nuclei Segmentation
- URL: http://arxiv.org/abs/2007.11186v1
- Date: Wed, 22 Jul 2020 03:37:14 GMT
- Title: Instance-aware Self-supervised Learning for Nuclei Segmentation
- Authors: Xinpeng Xie, Jiawei Chen, Yuexiang Li, Linlin Shen, Kai Ma and Yefeng
Zheng
- Abstract summary: We propose a novel self-supervised learning framework to exploit the capacity of convolutional neural networks (CNNs) on the nuclei instance segmentation task.
The proposed approach involves two sub-tasks, which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity.
Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance.
- Score: 47.07869311690419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the wide existence and large morphological variances of nuclei,
accurate nuclei instance segmentation is still one of the most challenging
tasks in computational pathology. The annotating of nuclei instances, requiring
experienced pathologists to manually draw the contours, is extremely laborious
and expensive, which often results in the deficiency of annotated data. The
deep learning based segmentation approaches, which highly rely on the quantity
of training data, are difficult to fully demonstrate their capacity in this
area. In this paper, we propose a novel self-supervised learning framework to
deeply exploit the capacity of widely-used convolutional neural networks (CNNs)
on the nuclei instance segmentation task. The proposed approach involves two
sub-tasks (i.e., scale-wise triplet learning and count ranking), which enable
neural networks to implicitly leverage the prior-knowledge of nuclei size and
quantity, and accordingly mine the instance-aware feature representations from
the raw data. Experimental results on the publicly available MoNuSeg dataset
show that the proposed self-supervised learning approach can remarkably boost
the segmentation accuracy of nuclei instance---a new state-of-the-art average
Aggregated Jaccard Index (AJI) of 70.63%, is achieved by our self-supervised
ResUNet-101. To our best knowledge, this is the first work focusing on the
self-supervised learning for instance segmentation.
Related papers
- Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
We propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL)
Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible.
Extensive experiments on a couple of publicly accessible datasets demonstrate that SGFSIS can outperform other annotation-efficient learning baselines.
arXiv Detail & Related papers (2024-02-26T03:49:18Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification [23.466331358975044]
We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
arXiv Detail & Related papers (2021-11-01T08:29:40Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation [7.141405427125369]
We propose a generic semi-supervised learning framework for image segmentation based on a deep convolutional neural network (DCNN)
Our method is able to significantly improve beyond fully supervised model learning by incorporating unlabeled data.
arXiv Detail & Related papers (2020-04-16T23:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.