PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification
- URL: http://arxiv.org/abs/2111.01557v2
- Date: Tue, 30 May 2023 08:11:04 GMT
- Title: PointNu-Net: Keypoint-assisted Convolutional Neural Network for
Simultaneous Multi-tissue Histology Nuclei Segmentation and Classification
- Authors: Kai Yao and Kaizhu Huang and Jie Sun and Amir Hussain
- Abstract summary: We study and design a new method to simultaneously detect, segment, and classify nuclei from Haematoxylin and Eosin stained histopathology data.
We demonstrate the superior performance of our proposed approach for nuclei segmentation and classification across 19 different tissue types.
- Score: 23.466331358975044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic nuclei segmentation and classification play a vital role in digital
pathology. However, previous works are mostly built on data with limited
diversity and small sizes, making the results questionable or misleading in
actual downstream tasks. In this paper, we aim to build a reliable and robust
method capable of dealing with data from the 'the clinical wild'. Specifically,
we study and design a new method to simultaneously detect, segment, and
classify nuclei from Haematoxylin and Eosin (H&E) stained histopathology data,
and evaluate our approach using the recent largest dataset: PanNuke. We address
the detection and classification of each nuclei as a novel semantic keypoint
estimation problem to determine the center point of each nuclei. Next, the
corresponding class-agnostic masks for nuclei center points are obtained using
dynamic instance segmentation. Meanwhile, we proposed a novel Joint Pyramid
Fusion Module (JPFM) to model the cross-scale dependencies, thus enhancing the
local feature for better nuclei detection and classification. By decoupling two
simultaneous challenging tasks and taking advantage of JPFM, our method can
benefit from class-aware detection and class-agnostic segmentation, thus
leading to a significant performance boost. We demonstrate the superior
performance of our proposed approach for nuclei segmentation and classification
across 19 different tissue types, delivering new benchmark results.
Related papers
- A Survey on Cell Nuclei Instance Segmentation and Classification: Leveraging Context and Attention [2.574831636177296]
We conduct a survey on context and attention methods for cell nuclei instance segmentation and classification from H&E-stained microscopy imaging.
We extend both a general instance segmentation and classification method (Mask-RCNN) and a tailored cell nuclei instance segmentation and classification model (HoVer-Net) with context- and attention-based mechanisms.
Our findings suggest translating that domain knowledge into algorithm design is no trivial task, but to fully exploit these mechanisms should be addressed.
arXiv Detail & Related papers (2024-07-26T11:30:22Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - BoNuS: Boundary Mining for Nuclei Segmentation with Partial Point Labels [34.57288003249214]
We propose a weakly-supervised nuclei segmentation method that only requires partial point labels of nuclei.
Specifically, we propose a novel boundary mining framework for nuclei segmentation, named BoNuS, which simultaneously learns nuclei interior and boundary information from the point labels.
We consider a nuclei detection module with curriculum learning to detect the missing nuclei with prior morphological knowledge.
arXiv Detail & Related papers (2024-01-15T02:50:39Z) - Prompt-based Grouping Transformer for Nucleus Detection and
Classification [70.55961378096116]
nuclei detection and classification can produce effective information for disease diagnosis.
Most existing methods classify nuclei independently or do not make full use of the semantic similarity between nuclei and their grouping features.
We propose a novel end-to-end nuclei detection and classification framework based on a grouping transformer-based classifier.
arXiv Detail & Related papers (2023-10-22T04:50:48Z) - A three in one bottom-up framework for simultaneous semantic
segmentation, instance segmentation and classification of multi-organ nuclei
in digital cancer histology [3.2228025627337864]
Simultaneous segmentation and classification of nuclei in digital histology play an essential role in computer-assisted cancer diagnosis.
The highest achieved binary and multi-class Panoptic Quality (PQ) remains as low as 0.68 bPQ and 0.49 mPQ, respectively.
This work extends our previous model to simultaneous instance segmentation and classification.
arXiv Detail & Related papers (2023-08-22T04:10:14Z) - Enhancing Nucleus Segmentation with HARU-Net: A Hybrid Attention Based
Residual U-Blocks Network [9.718765096478371]
Current methods for nucleus segmentation rely on nuclear morphology or contour-based approaches.
We propose a dual-branch network using hybrid attention based residual U-blocks for nucleus instance segmentation.
Within the network, we propose a context fusion block (CF-block) that effectively extracts and merges contextual information from the network.
arXiv Detail & Related papers (2023-08-07T08:03:20Z) - Structure Embedded Nucleus Classification for Histopathology Images [51.02953253067348]
Most neural network based methods are affected by the local receptive field of convolutions.
We propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order.
Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations.
arXiv Detail & Related papers (2023-02-22T14:52:06Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer.
We propose a two-stage mitosis segmentation and classification method, named SCMitosis.
The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained.
arXiv Detail & Related papers (2022-12-27T08:12:42Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
arXiv Detail & Related papers (2022-07-04T07:05:06Z) - Instance-aware Self-supervised Learning for Nuclei Segmentation [47.07869311690419]
We propose a novel self-supervised learning framework to exploit the capacity of convolutional neural networks (CNNs) on the nuclei instance segmentation task.
The proposed approach involves two sub-tasks, which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity.
Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance.
arXiv Detail & Related papers (2020-07-22T03:37:14Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.