Adversarial Training Reduces Information and Improves Transferability
- URL: http://arxiv.org/abs/2007.11259v4
- Date: Tue, 15 Dec 2020 22:52:16 GMT
- Title: Adversarial Training Reduces Information and Improves Transferability
- Authors: Matteo Terzi, Alessandro Achille, Marco Maggipinto, Gian Antonio Susto
- Abstract summary: Recent results show that features of adversarially trained networks for classification, in addition to being robust, enable desirable properties such as invertibility.
We show that the Adversarial Training can improve linear transferability to new tasks, from which arises a new trade-off between transferability of representations and accuracy on the source task.
- Score: 81.59364510580738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent results show that features of adversarially trained networks for
classification, in addition to being robust, enable desirable properties such
as invertibility. The latter property may seem counter-intuitive as it is
widely accepted by the community that classification models should only capture
the minimal information (features) required for the task. Motivated by this
discrepancy, we investigate the dual relationship between Adversarial Training
and Information Theory. We show that the Adversarial Training can improve
linear transferability to new tasks, from which arises a new trade-off between
transferability of representations and accuracy on the source task. We validate
our results employing robust networks trained on CIFAR-10, CIFAR-100 and
ImageNet on several datasets. Moreover, we show that Adversarial Training
reduces Fisher information of representations about the input and of the
weights about the task, and we provide a theoretical argument which explains
the invertibility of deterministic networks without violating the principle of
minimality. Finally, we leverage our theoretical insights to remarkably improve
the quality of reconstructed images through inversion.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Probabilistic Self-supervised Learning via Scoring Rules Minimization [19.347097627898876]
We propose a novel probabilistic self-supervised learning via Scoring Rule Minimization (ProSMIN) to enhance representation quality and mitigate collapsing representations.
Our method achieves superior accuracy and calibration, surpassing the self-supervised baseline in a wide range of experiments on large-scale datasets.
arXiv Detail & Related papers (2023-09-05T08:48:25Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Explaining, Evaluating and Enhancing Neural Networks' Learned
Representations [2.1485350418225244]
We show how explainability can be an aid, rather than an obstacle, towards better and more efficient representations.
We employ such attributions to define two novel scores for evaluating the informativeness and the disentanglement of latent embeddings.
We show that adopting our proposed scores as constraints during the training of a representation learning task improves the downstream performance of the model.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Adversarial Training Helps Transfer Learning via Better Representations [17.497590668804055]
Transfer learning aims to leverage models pre-trained on source data to efficiently adapt to target setting.
Recent works empirically demonstrate that adversarial training in the source data can improve the ability of models to transfer to new domains.
We show that adversarial training in the source data generates provably better representations, so fine-tuning on top of this representation leads to a more accurate predictor of the target data.
arXiv Detail & Related papers (2021-06-18T15:41:07Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.