論文の概要: Characterization and Identification of Cloudified Mobile Network
Performance Bottlenecks
- arxiv url: http://arxiv.org/abs/2007.11472v2
- Date: Thu, 23 Jul 2020 08:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 23:22:05.817098
- Title: Characterization and Identification of Cloudified Mobile Network
Performance Bottlenecks
- Title(参考訳): クラウド化モバイルネットワーク性能コンテナの特性と同定
- Authors: G. Patounas, X. Foukas, A. Elmokashfi, M. K. Marina
- Abstract要約: この研究は、5Gモバイルネットワークが経験できるパフォーマンスボトルネックの範囲を実験的に調査する最初の試みである。
特に,分散分析はボトルネック識別精度と帰納的計算・通信オーバーヘッドの両方において合理的に機能することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study is a first attempt to experimentally explore the range of
performance bottlenecks that 5G mobile networks can experience. To this end, we
leverage a wide range of measurements obtained with a prototype testbed that
captures the key aspects of a cloudified mobile network. We investigate the
relevance of the metrics and a number of approaches to accurately and
efficiently identify bottlenecks across the different locations of the network
and layers of the system architecture. Our findings validate the complexity of
this task in the multi-layered architecture and highlight the need for novel
monitoring approaches that intelligently fuse metrics across network layers and
functions. In particular, we find that distributed analytics performs
reasonably well both in terms of bottleneck identification accuracy and
incurred computational and communication overhead.
- Abstract(参考訳): この研究は、5Gモバイルネットワークが経験できるパフォーマンスボトルネックの範囲を実験的に調査する最初の試みである。
この目的のために,我々は,クラウド化モバイルネットワークの重要な側面をキャプチャするプロトタイプテストベッドによって得られた幅広い測定値を活用する。
ネットワークの異なる場所とシステムアーキテクチャのレイヤにまたがるボトルネックを正確にかつ効率的に識別するために、メトリクスと多くのアプローチの関連性を検討する。
本研究は,マルチレイヤアーキテクチャにおけるこのタスクの複雑さを検証し,ネットワーク層や関数間のメトリクスをインテリジェントに融合する新しいモニタリング手法の必要性を強調した。
特に,分散分析はボトルネック識別精度と帰納的計算・通信オーバーヘッドの両方において合理的に機能することがわかった。
関連論文リスト
- Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
本研究では,ハイパースペクトル画像復調におけるニューラルネットワークアーキテクチャの有効性について検討した。
様々なネットワークモデルと修正を導入し、それらを従来の手法や既存の参照ネットワークアプローチと比較する。
その結果、我々のネットワークは、例外的な性能を示す両方のデータセットにおいて、参照モデルよりも優れるか、一致していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T08:02:49Z) - Higher-order accurate two-sample network inference and network hashing [13.984114642035692]
ネットワーク比較のための2サンプル仮説テストは、多くの重要な課題を示す。
我々は,新しいメソッドとその変種を特徴とする包括的ツールボックスを開発した。
提案手法は,既存のツールの高速化と精度に優れ,電力効率が最適であることが証明された。
論文 参考訳(メタデータ) (2022-08-16T07:31:11Z) - GCN-based Multi-task Representation Learning for Anomaly Detection in
Attributed Networks [31.565081319419225]
近年、金融、ネットワークセキュリティ、医療など幅広い分野に応用されているため、属性付きネットワークにおける異常検出が注目されている。
従来のアプローチは、異常検出の問題を解決するために、属性付きネットワークの設定には適用できない。
マルチタスク学習を用いた異常検出の新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-08T04:54:53Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - ME-CapsNet: A Multi-Enhanced Capsule Networks with Routing Mechanism [0.0]
本研究は,各層の受容領域内の空間成分とチャネル成分の両面を高度に最適化する,新たなソリューションの実現に焦点をあてる。
我々は, カプセル層を戦略的に通過する前に重要な特徴を抽出するために, より深い畳み込み層を導入し, ME-CapsNetを提案する。
より深い畳み込み層にはSqueeze-Excitationネットワークのブロックが含まれており、重要な特徴情報を失うことなく、サンプリングアプローチを使用して相互依存関係を再構築する。
論文 参考訳(メタデータ) (2022-03-29T13:29:38Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
顔の個々の部分に焦点を絞った一連の偽造検知システムを設計する。
これらの検出器を用いて、FaceForensics++、Celeb-DF、Facebook Deepfake Detection Challengeデータセットの詳細な実験分析を行う。
論文 参考訳(メタデータ) (2021-09-21T16:18:45Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。