論文の概要: Understanding Multi-Modal Perception Using Behavioral Cloning for
Peg-In-a-Hole Insertion Tasks
- arxiv url: http://arxiv.org/abs/2007.11646v1
- Date: Wed, 22 Jul 2020 19:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 23:34:21.272227
- Title: Understanding Multi-Modal Perception Using Behavioral Cloning for
Peg-In-a-Hole Insertion Tasks
- Title(参考訳): peg-in-a-hole挿入課題に対する行動クローニングによるマルチモーダル知覚の理解
- Authors: Yifang Liu, Diego Romeres, Devesh K. Jha and Daniel Nikovski
- Abstract要約: 本稿では,実世界の組立作業における制御器を学習するために,複数のセンサモードが組み合わさった場合の利点について検討する。
動作クローン法の性能を向上させるために, マルチステップ・アヘッド・ロス関数を提案する。
- 参考スコア(独自算出の注目度): 21.275342989110978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main challenges in peg-in-a-hole (PiH) insertion tasks is in
handling the uncertainty in the location of the target hole. In order to
address it, high-dimensional sensor inputs from sensor modalities such as
vision, force/torque sensing, and proprioception can be combined to learn
control policies that are robust to this uncertainty in the target pose.
Whereas deep learning has shown success in recognizing objects and making
decisions with high-dimensional inputs, the learning procedure might damage the
robot when applying directly trial- and-error algorithms on the real system. At
the same time, learning from Demonstration (LfD) methods have been shown to
achieve compelling performance in real robotic systems by leveraging
demonstration data provided by experts. In this paper, we investigate the
merits of multiple sensor modalities such as vision, force/torque sensors, and
proprioception when combined to learn a controller for real world assembly
operation tasks using LfD techniques. The study is limited to PiH insertions;
we plan to extend the study to more experiments in the future. Additionally, we
propose a multi-step-ahead loss function to improve the performance of the
behavioral cloning method. Experimental results on a real manipulator support
our findings, and show the effectiveness of the proposed loss function.
- Abstract(参考訳): peg-in-a-hole(pih)挿入タスクの主な課題のひとつは、ターゲットホールの位置の不確実性に対処することである。
これに対処するために、視覚、力/トルクセンシング、固有感覚などのセンサモダリティからの高次元センサ入力を組み合わせることで、この不確かさに頑健な制御ポリシーを目標ポーズで学習することができる。
ディープラーニングは物体の認識や高次元入力による意思決定に成功しているが、実際のシステムに直接試行錯誤アルゴリズムを適用すると、学習手順がロボットを傷つける可能性がある。
同時に、実ロボットシステムにおいて、専門家が提供した実演データを利用することで、実演法(lfd)による学習が魅力的な性能を発揮することが示されている。
本稿では,LfD技術を用いた実世界の組立作業の制御系を学習するために,視覚,力/トルクセンサ,プロプリセプションなどの複数のセンサの利点について検討する。
この研究はPiHの挿入に限られており、将来的にはさらなる実験に拡張する予定です。
さらに,行動クローニング法の性能を向上させるために,マルチステップ・アヘッド損失関数を提案する。
実際のマニピュレータを用いた実験結果から, 提案した損失関数の有効性が示唆された。
関連論文リスト
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
ロボット工学における現在の最先端のアクション表現は、ロボットのアクションに対する適切な効果駆動学習を欠いている。
連続運動空間の離散化と「アクションプロトタイプ」生成のための教師なしアルゴリズムを提案する。
シミュレーションされた階段登上補強学習課題について,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T13:28:52Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
触覚能動推論強化学習(Tactile Active Inference Reinforcement Learning, Tactile-AIRL)と呼ばれるロボット操作におけるスキル学習手法を提案する。
強化学習(RL)の性能を高めるために,モデルに基づく手法と本質的な好奇心をRLプロセスに統合した能動推論を導入する。
本研究では,タスクをプッシュする非包括的オブジェクトにおいて,学習効率が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-11-19T10:19:22Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
効率的な強化学習アルゴリズムであるDEX(Demonstration-Guided Exploration)を導入する。
本手法は,生産的相互作用を促進するために,高い値で専門家のような行動を推定する。
総合的な手術シミュレーションプラットフォームであるSurRoLによる10ドルの手術操作に関する実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-02-20T05:38:54Z) - Reinforcement learning with Demonstrations from Mismatched Task under
Sparse Reward [7.51772160511614]
強化学習は、現実世界のロボティクス問題において、希少な報酬問題に悩まされることが多い。
先行研究はしばしば、学習エージェントと専門家が同じタスクを達成しようとしていると仮定する。
本稿では,対象タスクと専門家のタスクとが一致しない場合について考察する。
既存のLfD手法では、ミスマッチした新しいタスクにおける学習をスパース報酬で効果的に導くことはできない。
論文 参考訳(メタデータ) (2022-12-03T02:24:59Z) - Virtual Reality via Object Poses and Active Learning: Realizing
Telepresence Robots with Aerial Manipulation Capabilities [39.29763956979895]
本稿では,動的・非構造環境下での空中操作を進展させる新しいテレプレゼンスシステムを提案する。
提案システムは触覚デバイスだけでなく、ロボットのワークスペースのリアルタイム3Dディスプレイを提供する仮想現実(VR)インターフェースも備えている。
DLRケーブル・サスペンド・エアリアルマニピュレータ(SAM)によるピック・アンド・プレイス、フォース・アプリケーション、ペグ・イン・ホールの70以上の堅牢な実行を示す。
論文 参考訳(メタデータ) (2022-10-18T08:42:30Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
本稿では,TASKED(Self-KnowledgE Distillation)を用いたウェアラブルセンサを用いた,トランスフォーマーに基づく人間行動認識のための新しい逆学習フレームワークを提案する。
提案手法では,教師なしの自己知識蒸留を採用し,訓練手順の安定性と人間の活動認識性能を向上させる。
論文 参考訳(メタデータ) (2022-09-14T11:08:48Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。