論文の概要: Applying GPGPU to Recurrent Neural Network Language Model based Fast
Network Search in the Real-Time LVCSR
- arxiv url: http://arxiv.org/abs/2007.11794v1
- Date: Thu, 23 Jul 2020 05:15:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 11:44:33.991872
- Title: Applying GPGPU to Recurrent Neural Network Language Model based Fast
Network Search in the Real-Time LVCSR
- Title(参考訳): リアルタイムLVCSRにおけるニューラルネットワークモデルに基づく高速ネットワーク探索へのGPGPUの適用
- Authors: Kyungmin Lee, Chiyoun Park, Ilhwan Kim, Namhoon Kim, Jaewon Lee
- Abstract要約: リカレントニューラルネットワーク言語モデル (RNNLM) は音声認識の様々な分野で使われ始めている。
RNNLMの計算複雑性は、RNNLMをリアルタイムな大語彙連続音声認識に適用する上でハードルとなっている。
- 参考スコア(独自算出の注目度): 5.0555627833288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent Neural Network Language Models (RNNLMs) have started to be used in
various fields of speech recognition due to their outstanding performance.
However, the high computational complexity of RNNLMs has been a hurdle in
applying the RNNLM to a real-time Large Vocabulary Continuous Speech
Recognition (LVCSR). In order to accelerate the speed of RNNLM-based network
searches during decoding, we apply the General Purpose Graphic Processing Units
(GPGPUs). This paper proposes a novel method of applying GPGPUs to RNNLM-based
graph traversals. We have achieved our goal by reducing redundant computations
on CPUs and amount of transfer between GPGPUs and CPUs. The proposed approach
was evaluated on both WSJ corpus and in-house data. Experiments shows that the
proposed approach achieves the real-time speed in various circumstances while
maintaining the Word Error Rate (WER) to be relatively 10% lower than that of
n-gram models.
- Abstract(参考訳): リカレントニューラルネットワーク言語モデル(RNNLM)は、その優れた性能のために音声認識の様々な分野で使われ始めている。
しかし、RNNLMの計算複雑性は、リアルタイム大語彙連続音声認識(LVCSR)にRNNLMを適用する上でハードルとなっている。
復号処理におけるRNNLMに基づくネットワーク探索の高速化のために,GPGPU(General Purpose Graphic Processing Units)を適用した。
本稿では,RNNLMに基づくグラフトラバーサルにGPGPUを適用する新しい手法を提案する。
我々は、CPU上の冗長な計算とGPGPUとCPU間の転送量を削減することで、目標を達成した。
提案手法はwsjコーパスと社内データの両方で評価した。
提案手法は, 単語誤り率(wer)をn-gramモデルに比べて10%低く保ちながら, 様々な状況下でリアルタイム速度を実現することを示す。
関連論文リスト
- All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Recurrent Drafter for Fast Speculative Decoding in Large Language Models [18.342742904042673]
本稿では,高度な投機的復号法であるRecurrent Drafterを提案する。
大規模言語モデル(LLM)推論の最先端の高速化を実現する。
論文 参考訳(メタデータ) (2024-03-14T23:40:56Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Benchmarking GPU and TPU Performance with Graph Neural Networks [0.0]
この研究は、現実のパターン認識問題を解決するために開発されたグラフニューラルネットワーク(GNN)を用いてGPUとTPUのパフォーマンストレーニングを分析し、比較する。
スパースデータに作用する新しいモデルのクラスを特徴付けることは、ディープラーニングライブラリや将来のAIアクセラレータの設計を最適化するのに有効である。
論文 参考訳(メタデータ) (2022-10-21T21:03:40Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
イベントベースのグラフニューラルネットワークは、標準のGNNを一般化して、イベントを"進化的"時間グラフとして処理する。
AEGNNは同期入力で容易に訓練でき、テスト時に効率的な「非同期」ネットワークに変換できる。
論文 参考訳(メタデータ) (2022-03-31T16:21:12Z) - Learning on Hardware: A Tutorial on Neural Network Accelerators and
Co-Processors [0.0]
ディープニューラルネットワーク(dnn)は、複雑なタスクを解決可能にするために、多くのパラメータを考慮に入れることができるという利点がある。
コンピュータビジョンや音声認識では、一般的なアルゴリズムよりも精度が高く、タスクによっては人間の専門家よりも精度が高いものもあります。
近年のDNNの進展に伴い、疾患の診断や自動運転など、多くの応用分野が活用されています。
論文 参考訳(メタデータ) (2021-04-19T12:50:27Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
本稿では,ニューラルネットワークを用いた点雲の信号処理について述べる。
本研究では,このようなグラフニューラルネットワークの変分モデルを用いて,教師なし学習のためのグラフ上の信号を処理する方法を検討する。
論文 参考訳(メタデータ) (2021-03-30T13:31:11Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Toward Accurate Platform-Aware Performance Modeling for Deep Neural
Networks [0.17499351967216337]
機械学習に基づくPerfNetV2は、さまざまなGPUアクセラレータ上でのニューラルネットワークのパフォーマンスをモデル化するための、これまでの作業の精度を向上させる。
アプリケーションを利用すると、アプリケーションで使用される畳み込みニューラルネットワークの推論時間とトレーニング時間を予測することができる。
我々のケーススタディでは、PerfNetV2が13.1%のLeNet、AlexNet、VGG16、NVIDIA GTX-1080Tiで平均絶対パーセンテージエラーを発生し、ICBD 2018で発表された以前の研究のエラー率は200%に達する可能性がある。
論文 参考訳(メタデータ) (2020-12-01T01:42:23Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。