Harnessing spatial homogeneity of neuroimaging data: patch individual
filter layers for CNNs
- URL: http://arxiv.org/abs/2007.11899v1
- Date: Thu, 23 Jul 2020 10:11:43 GMT
- Title: Harnessing spatial homogeneity of neuroimaging data: patch individual
filter layers for CNNs
- Authors: Fabian Eitel, Jan Philipp Albrecht, Martin Weygandt, Friedemann Paul,
Kerstin Ritter
- Abstract summary: We suggest a new CNN architecture that combines the idea of hierarchical abstraction in neural networks with a prior on the spatial homogeneity of neuroimaging data.
By learning filters in individual image regions (patches) without sharing weights, PIF layers can learn abstract features faster and with fewer samples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuroimaging data, e.g. obtained from magnetic resonance imaging (MRI), is
comparably homogeneous due to (1) the uniform structure of the brain and (2)
additional efforts to spatially normalize the data to a standard template using
linear and non-linear transformations. Convolutional neural networks (CNNs), in
contrast, have been specifically designed for highly heterogeneous data, such
as natural images, by sliding convolutional filters over different positions in
an image. Here, we suggest a new CNN architecture that combines the idea of
hierarchical abstraction in neural networks with a prior on the spatial
homogeneity of neuroimaging data: Whereas early layers are trained globally
using standard convolutional layers, we introduce for higher, more abstract
layers patch individual filters (PIF). By learning filters in individual image
regions (patches) without sharing weights, PIF layers can learn abstract
features faster and with fewer samples. We thoroughly evaluated PIF layers for
three different tasks and data sets, namely sex classification on UK Biobank
data, Alzheimer's disease detection on ADNI data and multiple sclerosis
detection on private hospital data. We demonstrate that CNNs using PIF layers
result in higher accuracies, especially in low sample size settings, and need
fewer training epochs for convergence. To the best of our knowledge, this is
the first study which introduces a prior on brain MRI for CNN learning.
Related papers
- Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is particularly well suited to determine the 3D structure of particles in their native environment.
For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns.
We propose to formulate this task as an image classification problem and solve it using convolutional neural network (CNN) architectures.
arXiv Detail & Related papers (2021-12-16T17:03:14Z) - Data Augmentation and CNN Classification For Automatic COVID-19
Diagnosis From CT-Scan Images On Small Dataset [0.0]
We present an automatic COVID1-19 diagnosis framework from lung CT images.
We propose a unique and effective data augmentation method using multiple Hounsfield Unit (HU) normalization windows.
On the training/validation dataset, we achieve a patient classification accuracy of 93.39%.
arXiv Detail & Related papers (2021-08-16T15:23:00Z) - Combining 3D Image and Tabular Data via the Dynamic Affine Feature Map
Transform [3.5235974685889397]
We introduce the Dynamic Affine Feature Map Transform (DAFT), a general-purpose module for CNNs that dynamically rescales and shifts the feature maps of a convolutional layer, conditional on a patient's clinical information.
We show that DAFT is highly effective in combining 3D image and tabular information for diagnosis and time-to-dementia prediction, where it outperforms competing CNNs with a mean balanced accuracy of 0.622 and mean c-index of 0.748, respectively.
arXiv Detail & Related papers (2021-07-13T11:18:22Z) - Examining and Mitigating Kernel Saturation in Convolutional Neural
Networks using Negative Images [0.8594140167290097]
We analyze the effect of convolutional kernel saturation in CNNs.
We propose a simple data augmentation technique to mitigate saturation and increase classification accuracy, by supplementing negative images to the training dataset.
Our results show that CNNs are indeed susceptible to convolutional kernel saturation and that supplementing negative images to the training dataset can offer a statistically significant increase in classification accuracies.
arXiv Detail & Related papers (2021-05-10T06:06:49Z) - MARL: Multimodal Attentional Representation Learning for Disease
Prediction [0.0]
Existing learning models often utilise CT-scan images to predict lung diseases.
These models are posed by high uncertainties that affect lung segmentation and visual feature learning.
We introduce MARL, a novel Multimodal Attentional Representation Learning model architecture.
arXiv Detail & Related papers (2021-05-01T17:47:40Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.