Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset
- URL: http://arxiv.org/abs/2406.14210v1
- Date: Thu, 20 Jun 2024 11:26:32 GMT
- Title: Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset
- Authors: Chen Zheng,
- Abstract summary: Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
- Score: 11.173478552040441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structural magnetic resonance imaging (MRI) studies have shown that Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain. However, the absence of segmentation that highlights brain degenerative changes presents unique challenges for training CNN-based classifiers in a supervised fashion. In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification. Using the 3D T1-weighted MRI data of cognitive normal (CN) subjects from the synthetic neuroimaging LDM100K dataset, lightweight 3D CNN-based models are trained for brain age prediction, brain image rotation classification, brain image reconstruction and a multi-head task combining all three tasks into one. Feature extractors trained on the LDM100K synthetic dataset achieved similar performance compared to the same model using real-world data. This supports the feasibility of utilising large-scale synthetic data for pretext task training. All the training and testing splits are performed on the subject-level to prevent data leakage issues. Alongside the simple preprocessing steps, the random cropping data augmentation technique shows consistent improvement across all experiments.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images [0.9626666671366836]
We propose a framework to efficiently generate new samples for training a brain lesion segmentation model.
We first train a lesion generator, based on an adversarial autoencoder, in a self-supervised manner.
Next, we utilize a novel image composition algorithm, Soft Poisson Blending, to seamlessly combine synthetic lesions and brain images.
arXiv Detail & Related papers (2024-06-21T01:53:12Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis [3.208731414009847]
Transfer learning involves pre-training deep learning models on a large corpus of data for adaptation to specific tasks.
We benchmarked vision transformers (ViTs) and convolutional neural networks (CNNs) with varied upstream pre-training approaches.
The resulting pre-trained models can be adapted to a range of downstream tasks, even when training data for the target task is limited.
arXiv Detail & Related papers (2023-09-09T00:33:23Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
Vision transformers (ViT) have emerged in recent years as an alternative to CNNs for several computer vision applications.
We tested variants of the ViT architecture for a range of desired neuroimaging downstream tasks based on difficulty.
We achieved a performance boost of 5% and 9-10% upon fine-tuning vision transformer models pre-trained on synthetic and real MRI scans.
arXiv Detail & Related papers (2023-03-14T20:18:12Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties.
The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research.
An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data.
arXiv Detail & Related papers (2022-02-14T19:29:08Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks [0.0]
We use resting state derivatives from 1,112 subjects in ABIDE preprocessed to train a 3D convolutional neural network (CNN) to perform the classification.
Our results show that augmentation only provide minor improvements to the test accuracy.
arXiv Detail & Related papers (2021-10-20T11:03:17Z) - Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
data using 3D Convolutional Neural Networks [0.45077088620792216]
Age prediction based on Magnetic Resonance Imaging (MRI) data of the brain is a biomarker to quantify the progress of brain diseases and aging.
Current approaches rely on preparing the data with multiple preprocessing steps, such as registering voxels to a standardized brain atlas.
Here we describe a 3D Convolutional Neural Network (CNN) based on the ResNet architecture being trained on raw, non-registered T 1 -weighted MRI data.
arXiv Detail & Related papers (2021-03-22T09:48:34Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.