Dissipative flow equations
- URL: http://arxiv.org/abs/2007.12044v4
- Date: Fri, 18 Dec 2020 09:51:51 GMT
- Title: Dissipative flow equations
- Authors: Lorenzo Rosso, Fernando Iemini, Marco Schir\`o, Leonardo Mazza
- Abstract summary: We generalize the theory of flow equations to open quantum systems focusing on Lindblad master equations.
We first test our dissipative flow equations on a generic matrix and on a physical problem with a driven-dissipative single fermionic mode.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We generalize the theory of flow equations to open quantum systems focusing
on Lindblad master equations. We introduce and discuss three different
generators of the flow that transform a linear non-Hermitian operator into a
diagonal one. We first test our dissipative flow equations on a generic matrix
and on a physical problem with a driven-dissipative single fermionic mode. We
then move to problems with many fermionic modes and discuss the interplay
between coherent (disordered) dynamics and localized losses. Our method can
also be applied to non-Hermitian Hamiltonians.
Related papers
- Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air.
With the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations.
We propose the emphDeep Random Vortex Method (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation.
arXiv Detail & Related papers (2022-06-20T04:58:09Z) - Field-theoretical approach to open quantum systems and the Lindblad
equation [0.0]
We develop a field-theoretical approach to open quantum systems based on condensed-matter many-body methods.
Applying a condensed-matter pole or, equivalently, a quasi-type approximation, equivalent to the usual assumption of a timescale separation, we derive a master equation of the Markov type.
arXiv Detail & Related papers (2022-02-10T18:04:19Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Open quantum dynamics with singularities: Master equations and degree of
non-Markovianity [0.0]
First-order, time-local, homogeneous master equations fail to describe dynamics beyond the singular point.
We propose a reformulation in terms of higher-order differential equations to retain time-locality.
We also present a detailed study of the central spin model and we propose the average rate of information inflow in non-Markovian processes.
arXiv Detail & Related papers (2021-05-26T12:06:34Z) - Chaos and subdiffusion in the infinite-range coupled quantum kicked
rotors [0.0]
We map the infinite-range coupled quantum kicked rotors over an infinite-range coupled interacting bosonic model.
In the thermodynamic limit the system is described by a set of coupled Gross-Pitaevskij equations equivalent to an effective nonlinear single-rotor Hamiltonian.
arXiv Detail & Related papers (2021-02-15T22:29:01Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - The Rabi problem with elliptic polarization [0.0]
We consider the solution of the equation of motion of a classical/quantum spin subject to a monochromatical, polarized external field.
The physically interestingenergy as a function of the parameters of the problem and expressions is shown to be a function of the Bloch-Siegert shift of resonance frequencies.
arXiv Detail & Related papers (2020-06-30T16:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.