Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach
- URL: http://arxiv.org/abs/2408.05302v1
- Date: Fri, 9 Aug 2024 19:00:18 GMT
- Title: Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach
- Authors: Leonardo da Silva Souza, Fernando Iemini,
- Abstract summary: We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of open system dynamics is of paramount importance both from its fundamental aspects as well as from its potential applications in quantum technologies. In the simpler and most commonly studied case, the dynamics of the system can be described by a Lindblad master equation. However, identifying the Lindbladian that leads to general non-equilibrium steady states (NESS) is usually a non-trivial and challenging task. Here we introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS, i.e., a Lindbladian Reverse Engineering ($\mathcal{L}$RE) approach. The method maps the reconstruction task to a simple linear problem. Specifically, to the diagonalization of a correlation matrix whose elements are NESS observables and whose size scales linearly (at most quadratically) with the number of terms in the Hamiltonian (Lindblad jump operator) ansatz. The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions. Moreover, the map defines an iff condition for $\mathcal{L}$RE, which works as both a necessary and a sufficient condition; thus, it not only defines, if possible, Lindbaldian evolutions leading to the target NESS, but also determines the feasibility of such evolutions in a proposed setup. We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins. We also discuss non-Markovian effects and possible forms to recover Markovianity in the reconstructed Lindbaldian.
Related papers
- Solving the Lindblad equation with methods from computational fluid dynamics [0.0]
Liouvillian dynamics describes the evolution of a density operator in closed quantum systems.
One extension towards open quantum systems is provided by the Lindblad equation.
Main challenge is that analytical solutions for the Lindblad equation are only obtained for harmonic system potentials or two-level systems.
arXiv Detail & Related papers (2024-10-14T14:24:23Z) - Criteria for Davies Irreducibility of Markovian Quantum Dynamics [3.5127006916747714]
dynamics of Markovian open quantum systems are described by Lindblad master equations.
Steady states of irreducible systems are unique and faithful, i.e., they have full rank.
We discuss the decisive differences between (Davies) reducibility and Evans reducibility for quantum channels and dynamical semigroups.
arXiv Detail & Related papers (2023-10-26T17:55:46Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Area law for steady states of detailed-balance local Lindbladians [0.0]
We study steady-states of quantum Markovian processes whose evolution is described by local Lindbladians.
We show that under mild assumptions on the Lindbladian terms, the Lindbladian can be mapped to a local Hamiltonian on a doubled Hilbert space that has the same spectrum, and a ground state that is the vectorization of $sigma1/2$.
arXiv Detail & Related papers (2022-12-20T08:09:41Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Non-diagonal Lindblad master equations in quantum reservoir engineering [0.0]
We present a set of dynamical equations for the first and second moments of canonical variables for bosonic and fermionic linear Gaussian systems.
Our method is efficient and allows one to obtain analytical solutions for the steady state.
Our exploration yields a surprising byproduct: the Duan criterion, commonly applied to bosonic systems for verification of entanglement, is found to be equally valid for fermionic systems.
arXiv Detail & Related papers (2021-11-07T09:55:04Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Semiclassical Quantum Markovian Master Equations. Case Study: Continuous
Wave Magnetic Resonance of Multispin Systems [0.0]
We make use of a perturbation scheme we have termed "affine commutation perturbation" (ACP)
ACP has the advantage of incorporating some effects of the perturbation even at the zeroth-order approximation.
In contradistinction to the purely quantum Markovian master equations in the literature, we explicitly keep the term linear in the system-environment interaction.
arXiv Detail & Related papers (2020-04-22T21:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.