論文の概要: Optimal Transport using GANs for Lineage Tracing
- arxiv url: http://arxiv.org/abs/2007.12098v3
- Date: Wed, 5 Jan 2022 16:50:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 11:53:44.245307
- Title: Optimal Transport using GANs for Lineage Tracing
- Title(参考訳): 直線追跡のためのGANを用いた最適輸送
- Authors: Neha Prasad, Karren Yang, Caroline Uhler
- Abstract要約: Super-OTはGAN(Generative Adversarial Networks)に基づく教師付き学習フレームワークと最適なトランスポートを組み合わせる
We benchmark Super-OT based on single-cell RNA-seq data against Waddington-OT。
- 参考スコア(独自算出の注目度): 11.388463455968992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present Super-OT, a novel approach to computational lineage
tracing that combines a supervised learning framework with optimal transport
based on Generative Adversarial Networks (GANs). Unlike previous approaches to
lineage tracing, Super-OT has the flexibility to integrate paired data. We
benchmark Super-OT based on single-cell RNA-seq data against Waddington-OT, a
popular approach for lineage tracing that also employs optimal transport. We
show that Super-OT achieves gains over Waddington-OT in predicting the class
outcome of cells during differentiation, since it allows the integration of
additional information during training.
- Abstract(参考訳): 本稿では,教師付き学習フレームワークと,gans(generative adversarial networks)に基づく最適なトランスポートを組み合わせた,新しい計算系統追跡手法であるsuper-otを提案する。
以前の系統追跡のアプローチとは異なり、super-otはペアデータを統合する柔軟性がある。
我々は,一細胞rna-seqデータに基づくsuper-otをwaddington-otと比較した。
我々はsuper-otが分化過程における細胞群の結果を予測する際にwaddington-otよりも高い利益を得ることを示した。
関連論文リスト
- Double-Bounded Optimal Transport for Advanced Clustering and
Classification [58.237576976486544]
本稿では,2つの境界内での目標分布の制限を前提としたDB-OT(Douubly bounded Optimal Transport)を提案する。
提案手法は,テスト段階における改良された推論方式により,良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-01-21T07:43:01Z) - Analyzing and Improving Optimal-Transport-based Adversarial Networks [9.980822222343921]
最適輸送(OT)問題は、与えられたコスト関数を最小化しつつ、2つの分布をブリッジする輸送計画を見つけることを目的としている。
OT理論は生成モデリングに広く利用されている。
提案手法はCIFAR-10では2.51点,CelebA-HQ-256では5.99点のFIDスコアを得た。
論文 参考訳(メタデータ) (2023-10-04T06:52:03Z) - Active Finetuning: Exploiting Annotation Budget in the
Pretraining-Finetuning Paradigm [132.9949120482274]
本稿では,事前学習ファインタニングパラダイムにおけるアノテーションのためのサンプルの選択に焦点を当てる。
本研究では,アクティブな微調整タスクのためのActiveFTと呼ばれる新しい手法を提案する。
画像分類とセマンティックセグメンテーションの両方に基づくベースラインよりも優れたActiveFTの先行性能と高効率性を示す。
論文 参考訳(メタデータ) (2023-03-25T07:17:03Z) - Transport with Support: Data-Conditional Diffusion Bridges [18.933928516349397]
制約付き時系列データ生成タスクを解決するために,Iterative Smoothing Bridge (ISB)を導入する。
我々は,ISBが高次元データによく一般化し,計算効率が高く,中間時間と終時間における限界値の正確な推定値を提供することを示した。
論文 参考訳(メタデータ) (2023-01-31T13:50:16Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOTは最適な輸送の情報理論の拡張である。
幾何学的距離を最小化しながら、ドメイン間の相互情報を最大化する。
この定式化は、外れ値に対して堅牢な新しい射影法をもたらし、目に見えないサンプルに一般化する。
論文 参考訳(メタデータ) (2022-10-06T18:55:41Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - Score-based Generative Neural Networks for Large-Scale Optimal Transport [15.666205208594565]
場合によっては、最適な輸送計画は、ソースサポートからターゲットサポートへの1対1のマッピングの形を取る。
代わりに、ソースとターゲット分布のカップリングを解いた最適輸送の正規化形態であるシンクホーン問題について検討する。
本稿では,2つの分布間のシンクホーン結合をスコアベース生成モデルで学習するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-10-07T07:45:39Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Large-Scale Optimal Transport via Adversarial Training with
Cycle-Consistency [30.305690062622283]
本稿では,輸送マップを直接解き,一般コスト関数と互換性のある大規模最適輸送のためのエンドツーエンドアプローチを提案する。
提案手法の有効性を実世界の大規模応用に適用し,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-03-14T14:06:46Z) - TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
Dynamics [74.43710101147849]
本稿では,動的最適輸送を実現するために,分布間の連続経路を制御するTrjectoryNetを提案する。
単細胞RNAシークエンシング(scRNA-seq)技術から得られたデータにおける細胞動態の研究において、これが特に当てはまるかを示す。
論文 参考訳(メタデータ) (2020-02-09T21:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。