Enhanced Transfer Learning for Autonomous Driving with Systematic
Accident Simulation
- URL: http://arxiv.org/abs/2007.12148v1
- Date: Thu, 23 Jul 2020 17:27:00 GMT
- Title: Enhanced Transfer Learning for Autonomous Driving with Systematic
Accident Simulation
- Authors: Shivam Akhauri, Laura Zheng, Ming Lin
- Abstract summary: We show that transfer learning on simulated data sets provide better generalization and collision avoidance.
Our results illustrate that information from a model trained on simulated data can be inferred to a model trained on real-world data.
- Score: 3.2456691142503256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation data can be utilized to extend real-world driving data in order to
cover edge cases, such as vehicle accidents. The importance of handling edge
cases can be observed in the high societal costs in handling car accidents, as
well as potential dangers to human drivers. In order to cover a wide and
diverse range of all edge cases, we systemically parameterize and simulate the
most common accident scenarios. By applying this data to autonomous driving
models, we show that transfer learning on simulated data sets provide better
generalization and collision avoidance, as compared to random initialization
methods. Our results illustrate that information from a model trained on
simulated data can be inferred to a model trained on real-world data,
indicating the potential influence of simulation data in real world models and
advancements in handling of anomalous driving scenarios.
Related papers
- ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - An Approach to Systematic Data Acquisition and Data-Driven Simulation for the Safety Testing of Automated Driving Functions [32.37902846268263]
In R&D areas related to the safety impact of the "open world", there is a significant shortage of real-world data to parameterize and/or validate simulations.
We present an approach to systematically acquire data in public traffic by heterogeneous means, transform it into a unified representation, and use it to automatically parameterize traffic behavior models for use in data-driven virtual validation of automated driving functions.
arXiv Detail & Related papers (2024-05-02T23:24:27Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Data generation using simulation technology to improve perception
mechanism of autonomous vehicles [0.0]
We will demonstrate the effectiveness of combining data gathered from the real world with data generated in the simulated world to train perception systems.
We will also propose a multi-level deep learning perception framework that aims to emulate a human learning experience.
arXiv Detail & Related papers (2022-07-01T03:42:33Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - DR2L: Surfacing Corner Cases to Robustify Autonomous Driving via Domain
Randomization Reinforcement Learning [4.040937987024427]
Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data.
An adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation.
arXiv Detail & Related papers (2021-07-25T09:15:46Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.