ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable
- URL: http://arxiv.org/abs/2409.07830v1
- Date: Thu, 12 Sep 2024 08:26:33 GMT
- Title: ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable
- Authors: Yuan Yin, Pegah Khayatan, Éloi Zablocki, Alexandre Boulch, Matthieu Cord,
- Abstract summary: Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
- Score: 88.08120417169971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data, hindering their large-scale deployment. While increasing real-world training data coverage could address this issue, it is costly and dangerous. This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization. We propose ReGentS, which stabilizes generated trajectories and introduces heuristics to avoid obvious collisions and optimization problems. Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner. We also extend the scenario generation framework to handle real-world data with up to 32 agents. Additionally, by using a differentiable simulator, our approach simplifies gradient descent-based optimization involving a simulator, paving the way for future advancements. The code is available at https://github.com/valeoai/ReGentS.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
We introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques.
Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality.
arXiv Detail & Related papers (2024-08-06T13:58:56Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - KING: Generating Safety-Critical Driving Scenarios for Robust Imitation
via Kinematics Gradients [39.9379344872937]
Current driving simulators exhibit na"ive behavior models for background traffic.
Hand-tuned scenarios are typically added during simulation to induce safety-critical situations.
We propose KING, which generates safety-critical driving scenarios with a 20% higher success rate than black-box optimization.
arXiv Detail & Related papers (2022-04-28T17:48:48Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVE is a method to automatically generate challenging scenarios that cause a given planner to produce undesirable behavior, like collisions.
To maintain scenario plausibility, the key idea is to leverage a learned model of traffic motion in the form of a graph-based conditional VAE.
A subsequent optimization is used to find a "solution" to the scenario, ensuring it is useful to improve the given planner.
arXiv Detail & Related papers (2021-12-09T18:03:27Z) - DR2L: Surfacing Corner Cases to Robustify Autonomous Driving via Domain
Randomization Reinforcement Learning [4.040937987024427]
Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data.
An adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation.
arXiv Detail & Related papers (2021-07-25T09:15:46Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.