FiSSA at SemEval-2020 Task 9: Fine-tuned For Feelings
- URL: http://arxiv.org/abs/2007.12544v3
- Date: Mon, 19 Oct 2020 07:11:18 GMT
- Title: FiSSA at SemEval-2020 Task 9: Fine-tuned For Feelings
- Authors: Bertelt Braaksma, Richard Scholtens, Stan van Suijlekom, Remy Wang,
Ahmet \"Ust\"un
- Abstract summary: In this paper, we present our approach for sentiment classification on Spanish-English code-mixed social media data.
We explore both monolingual and multilingual models with the standard fine-tuning method.
Although two-step fine-tuning improves sentiment classification performance over the base model, the large multilingual XLM-RoBERTa model achieves best weighted F1-score.
- Score: 2.362412515574206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present our approach for sentiment classification on
Spanish-English code-mixed social media data in the SemEval-2020 Task 9. We
investigate performance of various pre-trained Transformer models by using
different fine-tuning strategies. We explore both monolingual and multilingual
models with the standard fine-tuning method. Additionally, we propose a custom
model that we fine-tune in two steps: once with a language modeling objective,
and once with a task-specific objective. Although two-step fine-tuning improves
sentiment classification performance over the base model, the large
multilingual XLM-RoBERTa model achieves best weighted F1-score with 0.537 on
development data and 0.739 on test data. With this score, our team jupitter
placed tenth overall in the competition.
Related papers
- CroissantLLM: A Truly Bilingual French-English Language Model [42.03897426049679]
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens.
We pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio.
To assess performance outside of English, we craft a novel benchmark, FrenchBench.
arXiv Detail & Related papers (2024-02-01T17:17:55Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
This report briefly describes our submission Vega v1 on the General Language Understanding Evaluation leaderboard.
GLUE is a collection of nine natural language understanding tasks, including question answering, linguistic acceptability, sentiment analysis, text similarity, paraphrase detection, and natural language inference.
With our optimized pretraining and fine-tuning strategies, our 1.3 billion model sets new state-of-the-art on 4/9 tasks, achieving the best average score of 91.3.
arXiv Detail & Related papers (2023-02-18T09:26:35Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
We propose a robust multilingual model to improve the quality of search results.
In pre-training stage, we adopt mlm task, classification task and contrastive learning task.
In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop)
arXiv Detail & Related papers (2023-01-31T07:31:34Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT'22 chat translation task for English-German.
Based on the Transformer, we apply several effective variants.
Our systems achieve 0.810 and 0.946 COMET scores.
arXiv Detail & Related papers (2022-11-28T02:35:04Z) - Alibaba-Translate China's Submission for WMT 2022 Metrics Shared Task [61.34108034582074]
We build our system based on the core idea of UNITE (Unified Translation Evaluation)
During the model pre-training phase, we first apply the pseudo-labeled data examples to continuously pre-train UNITE.
During the fine-tuning phase, we use both Direct Assessment (DA) and Multidimensional Quality Metrics (MQM) data from past years' WMT competitions.
arXiv Detail & Related papers (2022-10-18T08:51:25Z) - Unifying Language Learning Paradigms [96.35981503087567]
We present a unified framework for pre-training models that are universally effective across datasets and setups.
We show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective.
Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization.
arXiv Detail & Related papers (2022-05-10T19:32:20Z) - RoBLEURT Submission for the WMT2021 Metrics Task [72.26898579202076]
We present our submission to the Shared Metrics Task: RoBLEURT.
Our model reaches state-of-the-art correlations with the WMT 2020 human annotations upon 8 out of 10 to-English language pairs.
arXiv Detail & Related papers (2022-04-28T08:49:40Z) - HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with
Data Augmentation for Multilingual News Similarity [16.454545004093735]
This paper describes our system designed for SemEval-2022 Task 8: Multilingual News Article Similarity.
We proposed a linguistics-inspired model trained with a few task-specific strategies.
Our system ranked 1st on the leaderboard while achieving a Pearson's Correlation Coefficient of 0.818 on the official evaluation set.
arXiv Detail & Related papers (2022-04-11T03:08:37Z) - FH-SWF SG at GermEval 2021: Using Transformer-Based Language Models to
Identify Toxic, Engaging, & Fact-Claiming Comments [0.0]
We describe the methods we used for our submissions to the GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments.
For all three subtasks we fine-tuned freely available transformer-based models from the Huggingface model hub.
We evaluated the performance of various pre-trained models after fine-tuning on 80% of the training data and submitted predictions of the two best performing resulting models.
arXiv Detail & Related papers (2021-09-07T09:46:27Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - Gestalt: a Stacking Ensemble for SQuAD2.0 [0.0]
We propose a deep-learning system that finds, or indicates the lack of, a correct answer to a question in a context paragraph.
Our goal is to learn an ensemble of heterogeneous SQuAD2.0 models that outperforms the best model in the ensemble per se.
arXiv Detail & Related papers (2020-04-02T08:09:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.