ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search
- URL: http://arxiv.org/abs/2301.13455v1
- Date: Tue, 31 Jan 2023 07:31:34 GMT
- Title: ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search
- Authors: Xuange Cui, Wei Xiong, Songlin Wang
- Abstract summary: We propose a robust multilingual model to improve the quality of search results.
In pre-training stage, we adopt mlm task, classification task and contrastive learning task.
In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop)
- Score: 4.220439000486713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a robust multilingual model to improve the quality
of search results. Our model not only leverage the processed class-balanced
dataset, but also benefit from multitask pre-training that leads to more
general representations. In pre-training stage, we adopt mlm task,
classification task and contrastive learning task to achieve considerably
performance. In fine-tuning stage, we use confident learning, exponential
moving average method (EMA), adversarial training (FGM) and regularized dropout
strategy (R-Drop) to improve the model's generalization and robustness.
Moreover, we use a multi-granular semantic unit to discover the queries and
products textual metadata for enhancing the representation of the model. Our
approach obtained competitive results and ranked top-8 in three tasks. We
release the source code and pre-trained models associated with this work.
Related papers
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality [41.79433449873368]
We propose a novel multi-modal federated learning method, Federated Multi-modal contrastiVe training with Pre-trained completion (FedMVP)
FedMVP integrates the large-scale pre-trained models to enhance the federated training.
We demonstrate that the model achieves superior performance over two real-world image-text classification datasets.
arXiv Detail & Related papers (2024-06-16T19:18:06Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Meta-training with Demonstration Retrieval for Efficient Few-shot
Learning [11.723856248352007]
Large language models show impressive results on few-shot NLP tasks.
These models are memory and computation-intensive.
We propose meta-training with demonstration retrieval.
arXiv Detail & Related papers (2023-06-30T20:16:22Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation to unseen tasks.
We propose meta-learning techniques that use natural language guidance to achieve higher zero-shot performance.
arXiv Detail & Related papers (2022-10-17T11:09:35Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.