A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock
Prices and News
- URL: http://arxiv.org/abs/2007.12620v1
- Date: Thu, 23 Jul 2020 15:25:37 GMT
- Title: A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock
Prices and News
- Authors: Yang Li and Yi Pan
- Abstract summary: This paper proposes to use sentiment analysis to extract useful information from multiple textual data sources to predict future stock movement.
The blending ensemble model contains two levels. The first level contains two Recurrent Neural Networks (RNNs), one Long-Short Term Memory network (LSTM) and one Gated Recurrent Units network (GRU)
The fully connected neural network is used to ensemble several individual prediction results to further improve the prediction accuracy.
- Score: 7.578363431637128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning and deep learning have become popular
methods for financial data analysis, including financial textual data,
numerical data, and graphical data. This paper proposes to use sentiment
analysis to extract useful information from multiple textual data sources and a
blending ensemble deep learning model to predict future stock movement. The
blending ensemble model contains two levels. The first level contains two
Recurrent Neural Networks (RNNs), one Long-Short Term Memory network (LSTM) and
one Gated Recurrent Units network (GRU), followed by a fully connected neural
network as the second level model. The RNNs, LSTM, and GRU models can
effectively capture the time-series events in the input data, and the fully
connected neural network is used to ensemble several individual prediction
results to further improve the prediction accuracy. The purpose of this work is
to explain our design philosophy and show that ensemble deep learning
technologies can truly predict future stock price trends more effectively and
can better assist investors in making the right investment decision than other
traditional methods.
Related papers
- GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
We give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of textS&textP 500, NASDAQ, DJI, NYSE, and RUSSEL.
Experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4% text to 15%$, in terms of F-measure.
arXiv Detail & Related papers (2024-07-04T09:14:24Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Compatible deep neural network framework with financial time series
data, including data preprocessor, neural network model and trading strategy [2.347843817145202]
This research introduces a new deep neural network architecture and a novel idea of how to prepare financial data before feeding them to the model.
Three different datasets are used to evaluate this method, where results indicate that this framework can provide us with profitable and robust predictions.
arXiv Detail & Related papers (2022-05-11T20:44:08Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Generative Adversarial Network (GAN) and Enhanced Root Mean Square Error
(ERMSE): Deep Learning for Stock Price Movement Prediction [15.165487282631535]
This paper aims to improve prediction accuracy and minimize forecasting error loss by using Generative Adversarial Networks.
It was found that the Generative Adversarial Network (GAN) has performed well on the enhanced root mean square error to LSTM.
arXiv Detail & Related papers (2021-11-30T18:38:59Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - A Stochastic Time Series Model for Predicting Financial Trends using NLP [4.081440927534578]
Recent advancements in deep neural network technology allow researchers to develop highly accurate models to predict financial trends.
We propose a novel deep learning model called ST-GAN, or Time-series Generative Adversarial Network.
We utilize cutting-edge technology like the Generative Adversarial Network (GAN) to learn the correlations among textual and numerical data over time.
arXiv Detail & Related papers (2021-02-02T04:03:01Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - Deep Learning Based on Generative Adversarial and Convolutional Neural
Networks for Financial Time Series Predictions [0.0]
This paper proposes the implementation of a generative adversarial network (GAN), which is composed by a bi-directional Long short-term memory (LSTM) and convolutional neural network(CNN)
Bi-LSTM-CNN generates synthetic data that agree with existing real financial data so the features of stocks with positive or negative trends can be retained to predict future trends of a stock.
arXiv Detail & Related papers (2020-08-08T08:42:46Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.