Stock Price Prediction using Multi-Faceted Information based on Deep Recurrent Neural Networks
- URL: http://arxiv.org/abs/2411.19766v1
- Date: Fri, 29 Nov 2024 15:12:48 GMT
- Title: Stock Price Prediction using Multi-Faceted Information based on Deep Recurrent Neural Networks
- Authors: Lida Shahbandari, Elahe Moradi, Mohammad Manthouri,
- Abstract summary: This study proposes a novel approach for predicting stock prices in the stock market by integrating Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
The proposed methodology consists of two primary components: sentiment analysis of social network data and candlestick data.
- Score: 0.3749861135832073
- License:
- Abstract: Accurate prediction of stock market trends is crucial for informed investment decisions and effective portfolio management, ultimately leading to enhanced wealth creation and risk mitigation. This study proposes a novel approach for predicting stock prices in the stock market by integrating Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, using sentiment analysis of social network data and candlestick data (price). The proposed methodology consists of two primary components: sentiment analysis of social network and candlestick data. By amalgamating candlestick data with insights gleaned from Twitter, this approach facilitates a more detailed and accurate examination of market trends and patterns, ultimately leading to more effective stock price predictions. Additionally, a Random Forest algorithm is used to classify tweets as either positive or negative, allowing for a more subtle and informed assessment of market sentiment. This study uses CNN and LSTM networks to predict stock prices. The CNN extracts short-term features, while the LSTM models long-term dependencies. The integration of both networks enables a more comprehensive analysis of market trends and patterns, leading to more accurate stock price predictions.
Related papers
- Forecasting Foreign Exchange Market Prices Using Technical Indicators with Deep Learning and Attention Mechanism [0.46040036610482665]
The proposed architecture consists of a Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)
Technical indicators are employed to extract statistical features from Forex currency pair data.
The LSTM and CNN networks are utilized in parallel to predict future price movements.
arXiv Detail & Related papers (2024-11-29T15:07:44Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics.
The study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns.
The meticulously crafted LSTM incorporates crucial price and volume attributes over a 25-day time step.
arXiv Detail & Related papers (2023-12-09T07:53:25Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - FinBERT-LSTM: Deep Learning based stock price prediction using News
Sentiment Analysis [0.0]
Being able to predict short term movements in the market enables investors to reap greater returns on their investments.
We use Deep Learning networks to predict stock prices, assimilating financial, business and technology news articles.
arXiv Detail & Related papers (2022-11-11T15:13:16Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
We present an ensemble of independent and parallel long short-term memory neural networks for the prediction of stock price movement.
With a straightforward trading strategy, comparisons with a randomly chosen portfolio and a portfolio containing all the stocks in the index show that the portfolio resulting from the LSTM ensemble provides better average daily returns and higher cumulative returns over time.
arXiv Detail & Related papers (2022-01-20T15:17:26Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
Several methods were recently proposed to mine the shared information through stock concepts extracted from the Web to improve the forecasting results.
Previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts.
We propose a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts.
arXiv Detail & Related papers (2021-10-26T14:04:04Z) - A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock
Prices and News [7.578363431637128]
This paper proposes to use sentiment analysis to extract useful information from multiple textual data sources to predict future stock movement.
The blending ensemble model contains two levels. The first level contains two Recurrent Neural Networks (RNNs), one Long-Short Term Memory network (LSTM) and one Gated Recurrent Units network (GRU)
The fully connected neural network is used to ensemble several individual prediction results to further improve the prediction accuracy.
arXiv Detail & Related papers (2020-07-23T15:25:37Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.