Dialog without Dialog Data: Learning Visual Dialog Agents from VQA Data
- URL: http://arxiv.org/abs/2007.12750v1
- Date: Fri, 24 Jul 2020 19:35:57 GMT
- Title: Dialog without Dialog Data: Learning Visual Dialog Agents from VQA Data
- Authors: Michael Cogswell, Jiasen Lu, Rishabh Jain, Stefan Lee, Devi Parikh,
Dhruv Batra
- Abstract summary: "Dialog without Dialog" requires agents to develop dialog models that can adapt to new tasks without language level supervision.
By factorizing intention and language, our model minimizes linguistic drift after fine-tuning for new tasks.
- Score: 75.7372052716556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we develop visually grounded dialog agents that can efficiently adapt to
new tasks without forgetting how to talk to people? Such agents could leverage
a larger variety of existing data to generalize to new tasks, minimizing
expensive data collection and annotation. In this work, we study a setting we
call "Dialog without Dialog", which requires agents to develop visually
grounded dialog models that can adapt to new tasks without language level
supervision. By factorizing intention and language, our model minimizes
linguistic drift after fine-tuning for new tasks. We present qualitative
results, automated metrics, and human studies that all show our model can adapt
to new tasks and maintain language quality. Baselines either fail to perform
well at new tasks or experience language drift, becoming unintelligible to
humans. Code has been made available at
https://github.com/mcogswell/dialog_without_dialog
Related papers
- Weakly Supervised Data Augmentation Through Prompting for Dialogue
Understanding [103.94325597273316]
We present a novel approach that iterates on augmentation quality by applying weakly-supervised filters.
We evaluate our methods on the emotion and act classification tasks in DailyDialog and the intent classification task in Facebook Multilingual Task-Oriented Dialogue.
For DailyDialog specifically, using 10% of the ground truth data we outperform the current state-of-the-art model which uses 100% of the data.
arXiv Detail & Related papers (2022-10-25T17:01:30Z) - Prompting for a conversation: How to control a dialog model? [9.268682116424518]
Dialog models are trained on a large amount of text, yet their responses need to be limited to a desired scope and style of a dialog agent.
Because the datasets used to achieve the former contain language that is not compatible with the latter, pre-trained dialog models are fine-tuned on smaller curated datasets.
In this paper we investigate if prompting can mitigate the above trade-off.
arXiv Detail & Related papers (2022-09-22T14:59:55Z) - Adapting Task-Oriented Dialogue Models for Email Conversations [4.45709593827781]
In this paper, we provide an effective transfer learning framework (EMToD) that allows the latest development in dialogue models to be adapted for long-form conversations.
We show that the proposed EMToD framework improves intent detection performance over pre-trained language models by 45% and over pre-trained dialogue models by 30% for task-oriented email conversations.
arXiv Detail & Related papers (2022-08-19T16:41:34Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - Modeling Coreference Relations in Visual Dialog [18.926582410644375]
The occurrences of coreference relations in the dialog makes it a more challenging task than visual question-answering.
We propose two soft constraints that can improve the model's ability of resolving coreferences in dialog in an unsupervised way.
arXiv Detail & Related papers (2022-03-06T15:22:24Z) - The Adapter-Bot: All-In-One Controllable Conversational Model [66.48164003532484]
We propose a dialogue model that uses a fixed backbone model such as DialGPT and triggers on-demand dialogue skills via different adapters.
Depending on the skills, the model is able to process multiple knowledge types, such as text, tables, and emphatic responses.
We evaluate our model using automatic evaluation by comparing it with existing state-of-the-art conversational models.
arXiv Detail & Related papers (2020-08-28T10:59:31Z) - SOLOIST: Building Task Bots at Scale with Transfer Learning and Machine
Teaching [81.45928589522032]
We parameterize modular task-oriented dialog systems using a Transformer-based auto-regressive language model.
We pre-train, on heterogeneous dialog corpora, a task-grounded response generation model.
Experiments show that SOLOIST creates new state-of-the-art on well-studied task-oriented dialog benchmarks.
arXiv Detail & Related papers (2020-05-11T17:58:34Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.