論文の概要: Data-driven optimization of building layouts for energy efficiency
- arxiv url: http://arxiv.org/abs/2007.12796v1
- Date: Fri, 24 Jul 2020 22:58:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 08:20:46.614885
- Title: Data-driven optimization of building layouts for energy efficiency
- Title(参考訳): エネルギー効率のための建物レイアウトのデータ駆動最適化
- Authors: Andrew Sonta, Thomas R. Dougherty, Rishee K. Jain
- Abstract要約: 本稿では,この関係に基づいて照明システムのエネルギー消費をシミュレーションし,照明ゾーンエネルギーをゾーンレベルの占有動態に関連付ける手法を提案する。
本研究は, 利用者の日程の不均質な行動が, 高可制御性照明システムのエネルギー消費と正の相関関係があることを事例として明らかにした。
さらに,データ駆動型シミュレーションにより,165人からなる実オフィススペースの既設レイアウトと比較して,ナイーブなクラスタリングに基づく最適化と遺伝的アルゴリズムがエネルギー消費を約5%削減するレイアウトを生成することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the primary driving factors in building energy performance is occupant
behavioral dynamics. As a result, the layout of building occupant workstations
is likely to influence energy consumption. In this paper, we introduce methods
for relating lighting zone energy to zone-level occupant dynamics, simulating
energy consumption of a lighting system based on this relationship, and
optimizing the layout of buildings through the use of both a clustering-based
approach and a genetic algorithm in order to reduce energy consumption. We find
in a case study that nonhomogeneous behavior (i.e., high diversity) among
occupant schedules positively correlates with the energy consumption of a
highly controllable lighting system. We additionally find through data-driven
simulation that the na\"ive clustering-based optimization and the genetic
algorithm (which makes use of the energy simulation engine) produce layouts
that reduce energy consumption by roughly 5% compared to the existing layout of
a real office space comprised of 165 occupants. Overall, this study
demonstrates the merits of utilizing low-cost dynamic design of existing
building layouts as a means to reduce energy usage. Our work provides an
additional path to reach our sustainable energy goals in the built environment
through new non-capital-intensive interventions.
- Abstract(参考訳): エネルギー性能構築における主要な要因の1つは、占有行動のダイナミクスである。
その結果,建設作業場のレイアウトがエネルギー消費に影響を及ぼす可能性が示唆された。
本稿では,ゾーンレベルの占有者ダイナミクスに照明ゾーンエネルギーを関連づけ,この関係に基づいて照明システムのエネルギー消費をシミュレーションし,クラスタリングに基づく手法と遺伝的アルゴリズムを用いて建物のレイアウトを最適化し,エネルギー消費量を削減する手法を提案する。
本研究では,非均一行動(高多様性)が,高制御可能な照明システムのエネルギー消費と正の相関関係があることを見出した。
さらに,na\"ive clustering-based optimizationと遺伝的アルゴリズム(エネルギシミュレーションエンジンを利用する)が165人からなる実オフィス空間の既存のレイアウトと比較してエネルギー消費量を約5%削減するレイアウトを生成するというデータ駆動シミュレーションを行った。
本研究は,既存の建築レイアウトの低コストな動的設計をエネルギー使用量削減の手段として活用することのメリットを実証するものである。
我々の研究は、新たな資本集約的な介入を通じて、建設環境における持続可能なエネルギー目標に到達するための追加の道を提供する。
関連論文リスト
- Distributed Management of Fluctuating Energy Resources in Dynamic Networked Systems [3.716849174391564]
本稿では,複数のDERからなるシステムにおけるエネルギー共有問題について検討する。
我々はこの問題を,各ノードのエネルギー生産限界に対応する制約付き帯域凸最適化問題としてモデル化する。
そこで我々は, 動的後悔という概念をパフォーマンス指標として活用する, 定式化問題を解決するために, 分散意思決定ポリシーを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:54:11Z) - EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
本稿では,MARL(Multi-Agent Reinforcement Learning)エネルギー管理フレームワークであるEnergAIzeを紹介する。
ユーザ中心の多目的エネルギー管理を可能にし、各プローサが様々な個人管理目標から選択できるようにする。
EnergAIzeの有効性は、CityLearnシミュレーションフレームワークを用いたケーススタディにより評価された。
論文 参考訳(メタデータ) (2024-04-02T23:16:17Z) - Heuristics and Metaheuristics for Dynamic Management of Computing and
Cooling Energy in Cloud Data Centers [0.0]
共同冷却・計算最適化のための新しい電力・熱対応戦略とモデルを提案する。
結果から,メタヒューリスティックアルゴリズムと最適適応アルゴリズムの併用により,グローバルエネルギーを高速かつ軽量な最適化戦略に記述できることが示唆された。
このアプローチにより、コンピューティングと冷却インフラストラクチャの両方を考慮して、データセンターのエネルギー効率を21.74%向上し、サービス品質を維持しながら、最大で21.74%向上できる。
論文 参考訳(メタデータ) (2023-12-17T09:40:36Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
本研究は,多室ビルにおける室内温度予測のためのグローバルトランスフォーマーアーキテクチャを提案する。
エネルギー消費を最適化し、HVACシステムに関連する温室効果ガス排出を削減することを目的としている。
本研究は,マルチルームビルにおける室内温度予測にトランスフォーマーアーキテクチャを適用した最初の事例である。
論文 参考訳(メタデータ) (2023-10-31T14:09:32Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
エネルギーベースモデル(EBM)は通常、異なる特徴の組み合わせを学習し、入力構成ごとにエネルギーマッピングを生成する内部モデルによって構成される。
EBMのほぼ正しい(PAC)理論を拡張し,EBMの性能に及ぼす冗長性低減の影響を解析した。
論文 参考訳(メタデータ) (2023-06-02T12:30:42Z) - Building Energy Efficiency through Advanced Regression Models and Metaheuristic Techniques for Sustainable Management [3.6811136816751513]
この研究は、建設インフラからの広範な生データを活用して、エネルギー消費パターンを明らかにする。
ラッソ回帰, 決定木, ランダムフォレストモデルを用いて, 建物のエネルギー効率とコスト削減に影響を与える要因について検討した。
メタヒューリスティックな手法を用いて決定木アルゴリズムを改良し,予測精度を向上する。
論文 参考訳(メタデータ) (2023-05-15T01:21:42Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
強化学習(RL)による制御は、建築エネルギー効率を著しく向上させることが示されている。
我々は、ゼロショットビルディング制御と呼ばれるパラダイムを優先せずに、排出削減ポリシーを得られることを示す。
論文 参考訳(メタデータ) (2022-08-12T17:13:25Z) - A Comprehensive Review on the NILM Algorithms for Energy Disaggregation [0.0]
非侵入負荷モニタリング(NILM)またはエネルギー分散は、集合レベルで測定された家庭用エネルギーを構成機器に分離することを目的としている。
本稿では、効果的なNILMシステムフレームワークの調査を行い、ベンチマークアルゴリズムのパフォーマンスをレビューする。
論文 参考訳(メタデータ) (2021-02-20T23:53:57Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。