Learning Variational Data Assimilation Models and Solvers
- URL: http://arxiv.org/abs/2007.12941v1
- Date: Sat, 25 Jul 2020 14:28:48 GMT
- Title: Learning Variational Data Assimilation Models and Solvers
- Authors: Ronan Fablet, Bertrand Chapron, Lucas. Drumetz, Etienne Memin, Olivier
Pannekoucke, Francois Rousseau
- Abstract summary: We introduce end-to-end neural network architectures for data assimilation.
A key feature of the proposed end-to-end learning architecture is that we may train the NN models using both supervised and unsupervised strategies.
- Score: 34.22350850350653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses variational data assimilation from a learning point of
view. Data assimilation aims to reconstruct the time evolution of some state
given a series of observations, possibly noisy and irregularly-sampled. Using
automatic differentiation tools embedded in deep learning frameworks, we
introduce end-to-end neural network architectures for data assimilation. It
comprises two key components: a variational model and a gradient-based solver
both implemented as neural networks. A key feature of the proposed end-to-end
learning architecture is that we may train the NN models using both supervised
and unsupervised strategies. Our numerical experiments on Lorenz-63 and
Lorenz-96 systems report significant gain w.r.t. a classic gradient-based
minimization of the variational cost both in terms of reconstruction
performance and optimization complexity. Intriguingly, we also show that the
variational models issued from the true Lorenz-63 and Lorenz-96 ODE
representations may not lead to the best reconstruction performance. We believe
these results may open new research avenues for the specification of
assimilation models in geoscience.
Related papers
- Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - Unbiased Learning of Deep Generative Models with Structured Discrete
Representations [7.9057320008285945]
We propose novel algorithms for learning structured variational autoencoders (SVAEs)
We are the first to demonstrate the SVAE's ability to handle multimodal uncertainty when data is missing by incorporating discrete latent variables.
Our memory-efficient implicit differentiation scheme makes the SVAE tractable to learn via gradient descent, while demonstrating robustness to incomplete optimization.
arXiv Detail & Related papers (2023-06-14T03:59:21Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
We present a modular framework that determines the sparsity pattern of a deep-learning based surrogate using any sparse regression technique.
We show how a different network architecture and sparsity estimator improve model discovery accuracy and convergence on several benchmark examples.
arXiv Detail & Related papers (2020-11-09T11:02:40Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
Causal modeling has been recognized as a potential solution to many challenging problems in machine learning (ML)
We describe how a recently proposed counterfactual approach can still be used to deconfound the feature representations learned by deep neural network (DNN) models.
arXiv Detail & Related papers (2020-04-20T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.