論文の概要: Benchmarking Multivariate Time Series Classification Algorithms
- arxiv url: http://arxiv.org/abs/2007.13156v2
- Date: Wed, 26 Apr 2023 08:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 19:02:43.843247
- Title: Benchmarking Multivariate Time Series Classification Algorithms
- Title(参考訳): 多変量時系列分類アルゴリズムのベンチマーク
- Authors: Alejandro Pasos Ruiz, Michael Flynn and Anthony Bagnall
- Abstract要約: 時系列分類(TSC)は、順序付き、実値付き、属性から離散的なターゲット変数の予測モデルを構築することを含む。
近年,従来の技術よりも大幅に改良された新しいTSCアルゴリズムが開発されている。
本稿では, 深層学習, シェープレット, 単語の袋を用いた MTSC アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 69.12151492736524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time Series Classification (TSC) involved building predictive models for a
discrete target variable from ordered, real valued, attributes. Over recent
years, a new set of TSC algorithms have been developed which have made
significant improvement over the previous state of the art. The main focus has
been on univariate TSC, i.e. the problem where each case has a single series
and a class label. In reality, it is more common to encounter multivariate TSC
(MTSC) problems where multiple series are associated with a single label.
Despite this, much less consideration has been given to MTSC than the
univariate case. The UEA archive of 30 MTSC problems released in 2018 has made
comparison of algorithms easier. We review recently proposed bespoke MTSC
algorithms based on deep learning, shapelets and bag of words approaches. The
simplest approach to MTSC is to ensemble univariate classifiers over the
multivariate dimensions. We compare the bespoke algorithms to these dimension
independent approaches on the 26 of the 30 MTSC archive problems where the data
are all of equal length. We demonstrate that the independent ensemble of
HIVE-COTE classifiers is the most accurate, but that, unlike with univariate
classification, dynamic time warping is still competitive at MTSC.
- Abstract(参考訳): 時系列分類(TSC)は、順序付き、実値付き、属性から離散的なターゲット変数の予測モデルを構築することを含む。
近年,従来の技術よりも大幅に改良された新しいTSCアルゴリズムが開発されている。
主な焦点は不平等なtsc、すなわち、各ケースが1つのシリーズと1つのクラスラベルを持つ問題である。
実際、複数のシリーズが単一のラベルに関連付けられている多変量TSC(MTSC)問題に遭遇することが一般的である。
それにもかかわらず、MTSCに対する考慮は単変量の場合よりもはるかに少ない。
2018年にリリースされた30のMTSC問題のUEAアーカイブは、アルゴリズムの比較を容易にする。
本稿では, 深層学習, シェープレット, 単語の袋を用いた MTSC アルゴリズムを提案する。
MTSCの最も単純なアプローチは、多変量次元上の単変量分類器をアンサンブルすることである。
我々は,データの長さが等しい30 mtscアーカイブ問題の26項目について,これらの次元に依存しない手法と比較した。
HIVE-COTE分類器の独立アンサンブルが最も正確であることを示すが、単変量分類とは異なり、MTSCでは動的時間ワープが競合する。
関連論文リスト
- DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Convolutional and Deep Learning based techniques for Time Series Ordinal Classification [7.047582157120573]
時系列規則分類(TSOC)は、このギャップをカバーする分野であるが、文献では未解明である。
本稿では,TSOC手法の最初のベンチマークを行い,対象ラベルの順序付けを利用して,現在のTSCの現状を向上する。
論文 参考訳(メタデータ) (2023-06-16T11:57:11Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Enhancing Multivariate Time Series Classifiers through Self-Attention
and Relative Positioning Infusion [4.18804572788063]
時系列分類(TSC)は、多くのビジュアルコンピューティングアプリケーションにとって重要かつ困難な課題である。
本稿では,深層学習に基づくTSCアプローチを強化する2つの新しいアテンションブロックを提案する。
提案するアテンションブロックを追加することで,ベースモデルの平均精度が最大3.6%向上することを示す。
論文 参考訳(メタデータ) (2023-02-13T20:50:34Z) - The FreshPRINCE: A Simple Transformation Based Pipeline Time Series
Classifier [0.0]
我々は、最先端と見なされるアルゴリズムの複雑さが本当に必要かどうかを考察する。
最初に提案されたアプローチは、要約統計やその他の時系列特徴抽出アプローチの単純なパイプラインである。
我々はこれらの手法をUCC時系列データセットアーカイブ上でテストし、TSC文献がこれらの手法の有効性を見落としているかどうかを確認する。
論文 参考訳(メタデータ) (2022-01-28T11:23:58Z) - Robust Augmentation for Multivariate Time Series Classification [20.38907456958682]
カットアウト,カットミックス,ミックスアップ,ウィンドウワープの簡単な方法により,堅牢性と全体的な性能が向上することを示す。
InceptionTimeネットワークは18種類のデータセットで精度を1%から45%向上することを示す。
論文 参考訳(メタデータ) (2022-01-27T18:57:49Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Coupled regularized sample covariance matrix estimator for multiple
classes [14.41703014203756]
正規化のための2つの異なるターゲット行列を結合した多クラス問題に対する正規化SCM (RSCM) 推定器を検討する。
推定器のMSE最適チューニングパラメータを導出し,その推定法を提案する。
提案した結合RSCMのMSE性能をシミュレーションおよび実データに基づく正規化判別分析(RDA)分類で評価する。
論文 参考訳(メタデータ) (2020-11-09T10:39:53Z) - XEM: An Explainable-by-Design Ensemble Method for Multivariate Time
Series Classification [61.33695273474151]
マルチ変数時系列分類のためのeXplainable-by-design Ensemble法であるXEMを提案する。
XEMは、明示的なブースティング・バッグ・アプローチと暗黙的なディペンション・アンド・コンカ・アプローチを組み合わせた新しいハイブリッド・アンサンブル法に依存している。
評価の結果、XEM は、パブリック UEA データセット上で最先端の MTS 分類器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-07T17:50:18Z) - Supervised Feature Subset Selection and Feature Ranking for Multivariate
Time Series without Feature Extraction [78.84356269545157]
MTS分類のための教師付き特徴ランキングと特徴サブセット選択アルゴリズムを導入する。
MTSの既存の教師なし特徴選択アルゴリズムとは異なり、我々の手法は時系列から一次元特徴ベクトルを生成するために特徴抽出ステップを必要としない。
論文 参考訳(メタデータ) (2020-05-01T07:46:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。