WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic
- URL: http://arxiv.org/abs/2007.13242v1
- Date: Sun, 26 Jul 2020 23:18:38 GMT
- Title: WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic
- Authors: Renkun Ni, Hong-min Chu, Oscar Casta\~neda, Ping-yeh Chiang, Christoph
Studer, Tom Goldstein
- Abstract summary: We propose a method that adapts neural networks to use low-resolution (8-bit) additions in the accumulators, achieving classification accuracy comparable to their 32-bit counterparts.
We demonstrate the efficacy of our approach on both software and hardware platforms.
- Score: 57.07483440807549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-resolution neural networks represent both weights and activations with
few bits, drastically reducing the multiplication complexity. Nonetheless,
these products are accumulated using high-resolution (typically 32-bit)
additions, an operation that dominates the arithmetic complexity of inference
when using extreme quantization (e.g., binary weights). To further optimize
inference, we propose a method that adapts neural networks to use
low-resolution (8-bit) additions in the accumulators, achieving classification
accuracy comparable to their 32-bit counterparts. We achieve resilience to
low-resolution accumulation by inserting a cyclic activation layer, as well as
an overflow penalty regularizer. We demonstrate the efficacy of our approach on
both software and hardware platforms.
Related papers
- Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Quantized Neural Networks for Low-Precision Accumulation with Guaranteed
Overflow Avoidance [68.8204255655161]
We introduce a quantization-aware training algorithm that guarantees avoiding numerical overflow when reducing the precision of accumulators during inference.
We evaluate our algorithm across multiple quantized models that we train for different tasks, showing that our approach can reduce the precision of accumulators while maintaining model accuracy with respect to a floating-point baseline.
arXiv Detail & Related papers (2023-01-31T02:46:57Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
We propose the use of power-of-two quantization, which quantizes continuous parameters into low-bit power-of-two values.
This reduces computational complexity by removing expensive multiplication operations and with the use of low-bit weights.
arXiv Detail & Related papers (2022-07-15T14:34:22Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
Quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation.
Extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures results in severe performance degeneration.
This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration.
arXiv Detail & Related papers (2022-07-04T13:25:49Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
Quantization of deep neural networks is a promising approach that reduces the inference cost.
We propose a new framework to learn the quantization intervals (discrete values) using the knowledge of the network's weight and activation distributions.
Our scheme simultaneously prunes the network's parameters and allows us to flexibly adjust the pruning ratio during the quantization process.
arXiv Detail & Related papers (2022-02-24T23:33:47Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Sparse Uncertainty Representation in Deep Learning with Inducing Weights [22.912675044223302]
We extend Matheron's conditional Gaussian sampling rule to enable fast weight sampling, which enables our inference method to maintain reasonable run-time as compared with ensembles.
Our approach achieves competitive performance to the state-of-the-art in prediction and uncertainty estimation tasks with fully connected neural networks and ResNets.
arXiv Detail & Related papers (2021-05-30T18:17:47Z) - Accelerating Neural Network Inference by Overflow Aware Quantization [16.673051600608535]
Inherited heavy computation of deep neural networks prevents their widespread applications.
We propose an overflow aware quantization method by designing trainable adaptive fixed-point representation.
With the proposed method, we are able to fully utilize the computing power to minimize the quantization loss and obtain optimized inference performance.
arXiv Detail & Related papers (2020-05-27T11:56:22Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.