Sparse Uncertainty Representation in Deep Learning with Inducing Weights
- URL: http://arxiv.org/abs/2105.14594v1
- Date: Sun, 30 May 2021 18:17:47 GMT
- Title: Sparse Uncertainty Representation in Deep Learning with Inducing Weights
- Authors: Hippolyt Ritter, Martin Kukla, Cheng Zhang, Yingzhen Li
- Abstract summary: We extend Matheron's conditional Gaussian sampling rule to enable fast weight sampling, which enables our inference method to maintain reasonable run-time as compared with ensembles.
Our approach achieves competitive performance to the state-of-the-art in prediction and uncertainty estimation tasks with fully connected neural networks and ResNets.
- Score: 22.912675044223302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian neural networks and deep ensembles represent two modern paradigms of
uncertainty quantification in deep learning. Yet these approaches struggle to
scale mainly due to memory inefficiency issues, since they require parameter
storage several times higher than their deterministic counterparts. To address
this, we augment the weight matrix of each layer with a small number of
inducing weights, thereby projecting the uncertainty quantification into such
low dimensional spaces. We further extend Matheron's conditional Gaussian
sampling rule to enable fast weight sampling, which enables our inference
method to maintain reasonable run-time as compared with ensembles. Importantly,
our approach achieves competitive performance to the state-of-the-art in
prediction and uncertainty estimation tasks with fully connected neural
networks and ResNets, while reducing the parameter size to $\leq 24.3\%$ of
that of a $single$ neural network.
Related papers
- Learning Active Subspaces for Effective and Scalable Uncertainty
Quantification in Deep Neural Networks [13.388835540131508]
We propose a novel scheme for constructing a low-dimensional subspace of the neural network parameters.
We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference.
Our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.
arXiv Detail & Related papers (2023-09-06T15:00:36Z) - Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
Sparse deep learning addresses challenges by recovering a sparse representation of the underlying target function.
Deep neural architectures compressed via structured sparsity provide low latency inference, higher data throughput, and reduced energy consumption.
We propose structurally sparse Bayesian neural networks which prune excessive nodes with (i) Spike-and-Slab Group Lasso (SS-GL), and (ii) Spike-and-Slab Group Horseshoe (SS-GHS) priors.
arXiv Detail & Related papers (2023-08-17T17:14:18Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Layer Ensembles [95.42181254494287]
We introduce a method for uncertainty estimation that considers a set of independent categorical distributions for each layer of the network.
We show that the method can be further improved by ranking samples, resulting in models that require less memory and time to run.
arXiv Detail & Related papers (2022-10-10T17:52:47Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
Deep Learning [24.3370326359959]
We propose to predict with a Gaussian mixture model posterior that consists of a weighted sum of Laplace approximations of independently trained deep neural networks.
We theoretically validate that our approach mitigates overconfidence "far away" from the training data and empirically compare against state-of-the-art baselines on standard uncertainty quantification benchmarks.
arXiv Detail & Related papers (2021-11-05T15:52:48Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
We propose a novel storage format for convolutional neural networks (CNNs) based on source coding and leveraging both weight pruning and quantization.
We achieve a reduction of space occupancy up to 0.6% on fully connected layers and 5.44% on the whole network, while performing at least as competitive as the baseline.
arXiv Detail & Related papers (2021-08-28T20:39:54Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
We aim for efficient deep BNNs amenable to complex computer vision architectures.
We achieve this by leveraging variational autoencoders (VAEs) to learn the interaction and the latent distribution of the parameters at each network layer.
Our approach, Latent-Posterior BNN (LP-BNN), is compatible with the recent BatchEnsemble method, leading to highly efficient (in terms of computation and memory during both training and testing) ensembles.
arXiv Detail & Related papers (2020-12-04T19:50:09Z) - WrapNet: Neural Net Inference with Ultra-Low-Resolution Arithmetic [57.07483440807549]
We propose a method that adapts neural networks to use low-resolution (8-bit) additions in the accumulators, achieving classification accuracy comparable to their 32-bit counterparts.
We demonstrate the efficacy of our approach on both software and hardware platforms.
arXiv Detail & Related papers (2020-07-26T23:18:38Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.