論文の概要: Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D
Reconstruction with Symmetry
- arxiv url: http://arxiv.org/abs/2007.13393v1
- Date: Mon, 27 Jul 2020 09:17:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 08:47:44.969557
- Title: Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D
Reconstruction with Symmetry
- Title(参考訳): Ladybird: シンメトリーを用いた深部深達度3次元再構成のための準モンテカルロサンプリング
- Authors: Yifan Xu, Tianqi Fan, Yi Yuan, Gurprit Singh
- Abstract要約: 本稿では,SGDに基づく最適化アルゴリズムの一般化と高速収束を理論的に促進するサンプリング手法を提案する。
物体の反射対称性に基づいて,自己閉塞による問題を緩和する特徴融合法を提案する。
提案システムでは,単一入力画像から高品質な3Dオブジェクト再構成を行うことができる。
- 参考スコア(独自算出の注目度): 12.511526058118143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep implicit field regression methods are effective for 3D reconstruction
from single-view images. However, the impact of different sampling patterns on
the reconstruction quality is not well-understood. In this work, we first study
the effect of point set discrepancy on the network training. Based on Farthest
Point Sampling algorithm, we propose a sampling scheme that theoretically
encourages better generalization performance, and results in fast convergence
for SGD-based optimization algorithms. Secondly, based on the reflective
symmetry of an object, we propose a feature fusion method that alleviates
issues due to self-occlusions which makes it difficult to utilize local image
features. Our proposed system Ladybird is able to create high quality 3D object
reconstructions from a single input image. We evaluate Ladybird on a large
scale 3D dataset (ShapeNet) demonstrating highly competitive results in terms
of Chamfer distance, Earth Mover's distance and Intersection Over Union (IoU).
- Abstract(参考訳): 深暗視野回帰法は, 単視点画像からの3次元再構成に有効である。
しかし, 異なるサンプリングパターンが復元品質に及ぼす影響はよく理解されていない。
本研究は,まず,ネットワークトレーニングにおける点集合の不一致の影響について検討する。
最遠点サンプリングアルゴリズムに基づいて,理論上は一般化性能の向上を奨励するサンプリングスキームを提案し,sgdに基づく最適化アルゴリズムの高速収束を実現する。
次に,物体の反射対称性に基づいて,局所的な画像特徴の活用が困難となる自己排他性に起因する問題を緩和する特徴融合法を提案する。
提案システムでは,単一入力画像から高品質な3Dオブジェクト再構成を行うことができる。
大規模3次元データセット (shapenet) 上でのladybirdの評価を行い, チャンファー距離, アースムーバー距離, ユニオン上の交差点 (iou) において高い競合性を示した。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
本稿では,光度ステレオにより得られる多視点反射率と正規写像を統合するための多目的パラダイムを提案する。
提案手法では, 反射率と正規度の画素ワイドな共同パラメータ化を, 放射光のベクトルとして用いた。
これは、高い曲率または低い視認性を持つ領域の詳細な3D再構成を大幅に改善する。
論文 参考訳(メタデータ) (2023-12-02T19:49:27Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
単一のRGB画像から物体の3次元形状を再構築することは、コンピュータビジョンにおける長年の課題である。
条件付き偏光拡散プロセスによりスパース点雲を生成する単一像3次元再構成法を提案する。
論文 参考訳(メタデータ) (2023-02-21T13:37:07Z) - Leveraging Monocular Disparity Estimation for Single-View Reconstruction [8.583436410810203]
単分子深度推定の進歩を利用して不均一マップを得る。
我々は,2次元の正規化不均質マップを,関連するカメラパラメータの最適化によって3次元の点群に変換する。
論文 参考訳(メタデータ) (2022-07-01T03:05:40Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
モノクロ画像から3次元物体を再構成する深層強化学習手法を提案する。
提案手法は, 視覚的品質, 再構成精度, 計算時間において, 最先端技術よりも優れる。
論文 参考訳(メタデータ) (2021-09-24T09:44:22Z) - Robust Extrinsic Symmetry Estimation in 3D Point Clouds [4.416484585765027]
3次元点雲で表される物体の反射対称性面を検出することは、3次元コンピュータビジョンと幾何学処理の基本的な問題である。
本稿では,外乱や欠落部分に対して頑健な反射対称性の平面に対する統計的推定器に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-21T03:09:51Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
回帰に基づく手法は最近、単眼画像からヒトのメッシュを再構成する有望な結果を示した。
パラメータの小さな偏差は、推定メッシュと画像のエビデンスの間に顕著な不一致を引き起こす可能性がある。
本稿では,特徴ピラミッドを活用し,予測パラメータを補正するために,ピラミッドメッシュアライメントフィードバック(pymaf)ループを提案する。
論文 参考訳(メタデータ) (2021-03-30T17:07:49Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。