Dominant Reaction Pathways by Quantum Computing
- URL: http://arxiv.org/abs/2007.13788v2
- Date: Thu, 7 Jan 2021 12:17:27 GMT
- Title: Dominant Reaction Pathways by Quantum Computing
- Authors: Philipp Hauke and Giovanni Mattiotti and Pietro Faccioli
- Abstract summary: Characterizing thermally activated transitions in high-dimensional rugged energy surfaces is a challenging task for classical computers.
We develop a quantum annealing scheme to solve this problem.
We pave the way towards future biophysical applications of quantum computing based on realistic all-atom models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characterizing thermally activated transitions in high-dimensional rugged
energy surfaces is a very challenging task for classical computers. Here, we
develop a quantum annealing scheme to solve this problem. First, the task of
finding the most probable transition paths in configuration space is reduced to
a shortest-path problem defined on a suitable weighted graph. Next, this
optimization problem is mapped into finding the ground state of a generalized
Ising model. A finite-size scaling analysis suggests this task may be solvable
efficiently by a quantum annealing machine. Our approach leverages on the
quantized nature of qubits to describe transitions between different system's
configurations. Since it does not involve any lattice space discretization, it
paves the way towards future biophysical applications of quantum computing
based on realistic all-atom models.
Related papers
- Fast Quantum Process Tomography via Riemannian Gradient Descent [3.1406146587437904]
Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science.
One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data.
arXiv Detail & Related papers (2024-04-29T16:28:14Z) - Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Quantum Computing and Tensor Networks for Laminate Design: A Novel Approach to Stacking Sequence Retrieval [1.6421520075844793]
A prime example is the weight optimization of laminated composite materials, which to this day remains a formidable problem.
The rapidly developing field of quantum computation may offer novel approaches for addressing these intricate problems.
arXiv Detail & Related papers (2024-02-09T15:01:56Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Avoiding barren plateaus via transferability of smooth solutions in
Hamiltonian Variational Ansatz [0.0]
Variational Quantum Algorithms (VQAs) represent leading candidates to achieve computational speed-ups on current quantum devices.
Two major hurdles are the proliferation of low-quality variational local minima, and the exponential vanishing of gradients in the cost function landscape.
Here we show that by employing iterative search schemes one can effectively prepare the ground state of paradigmatic quantum many-body models.
arXiv Detail & Related papers (2022-06-04T12:52:29Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum computing for classical problems: Variational Quantum
Eigensolver for activated processes [0.0]
This paper reports the development and implementation of a Variational Quantum Eigensolver procedure to solve the Fokker-Planck-Smoluchowski eigenvalue problem.
We show that such an algorithm, typically adopted to address quantum chemistry problems, can be applied effectively to classical systems paving the way to new applications of quantum computers.
arXiv Detail & Related papers (2021-07-27T18:16:16Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.