Adiabatic Quantum Computing for Multi Object Tracking
- URL: http://arxiv.org/abs/2202.08837v1
- Date: Thu, 17 Feb 2022 18:59:20 GMT
- Title: Adiabatic Quantum Computing for Multi Object Tracking
- Authors: Jan-Nico Zaech, Alexander Liniger, Martin Danelljan, Dengxin Dai, Luc
Van Gool
- Abstract summary: Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
- Score: 170.8716555363907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Object Tracking (MOT) is most often approached in the
tracking-by-detection paradigm, where object detections are associated through
time. The association step naturally leads to discrete optimization problems.
As these optimization problems are often NP-hard, they can only be solved
exactly for small instances on current hardware. Adiabatic quantum computing
(AQC) offers a solution for this, as it has the potential to provide a
considerable speedup on a range of NP-hard optimization problems in the near
future. However, current MOT formulations are unsuitable for quantum computing
due to their scaling properties. In this work, we therefore propose the first
MOT formulation designed to be solved with AQC. We employ an Ising model that
represents the quantum mechanical system implemented on the AQC. We show that
our approach is competitive compared with state-of-the-art optimization-based
approaches, even when using of-the-shelf integer programming solvers. Finally,
we demonstrate that our MOT problem is already solvable on the current
generation of real quantum computers for small examples, and analyze the
properties of the measured solutions.
Related papers
- Classical optimization with imaginary time block encoding on quantum computers: The MaxCut problem [2.4968861883180447]
Finding ground state solutions of diagonal Hamiltonians is relevant for both theoretical as well as practical problems of interest in many domains such as finance, physics and computer science.
Here we use imaginary time evolution through a new block encoding scheme to obtain the ground state of such problems and apply our method to MaxCut as an illustration.
arXiv Detail & Related papers (2024-11-16T08:17:36Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances [0.0]
This paper establishes a new protocol to generate graph instances with their associated near-optimal minor-embedding mappings to D-Wave Quantum Annealers.
We use this method to benchmark QA on large instances of unconstrained and constrained optimization problems and compare the performance of the QPU with efficient classical solvers.
arXiv Detail & Related papers (2024-05-02T15:19:39Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Test Case Minimization with Quantum Annealers [0.0]
Theoretically, quantum annealers can outperform classical computers.
Small-scale, i.e., they have limited quantum bits (qubits)
We propose BootQA, the very first effort at solving the test case (TCM) problem with QA.
arXiv Detail & Related papers (2023-08-10T11:31:53Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Model Predictive Control for Finite Input Systems using the D-Wave
Quantum Annealer [4.83782736808514]
The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest.
We present a model predictive control (MPC) algorithm using a quantum annealer.
Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated.
arXiv Detail & Related papers (2020-01-06T05:11:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.