Coupled Convolutional Neural Network with Adaptive Response Function
Learning for Unsupervised Hyperspectral Super-Resolution
- URL: http://arxiv.org/abs/2007.14007v1
- Date: Tue, 28 Jul 2020 06:17:02 GMT
- Title: Coupled Convolutional Neural Network with Adaptive Response Function
Learning for Unsupervised Hyperspectral Super-Resolution
- Authors: Ke Zheng and Lianru Gao and Wenzhi Liao and Danfeng Hong and Bing
Zhang and Ximin Cui and Jocelyn Chanussot
- Abstract summary: Hyperspectral super-resolution refers to fusing HSI and MSI to generate an image with both high spatial and high spectral resolutions.
In this work, an unsupervised deep learning-based fusion method - HyCoNet - that can solve the problems in HSI-MSI fusion without the prior PSF and SRF information is proposed.
- Score: 28.798775822331045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limitations of hyperspectral imaging systems, hyperspectral
imagery (HSI) often suffers from poor spatial resolution, thus hampering many
applications of the imagery. Hyperspectral super-resolution refers to fusing
HSI and MSI to generate an image with both high spatial and high spectral
resolutions. Recently, several new methods have been proposed to solve this
fusion problem, and most of these methods assume that the prior information of
the Point Spread Function (PSF) and Spectral Response Function (SRF) are known.
However, in practice, this information is often limited or unavailable. In this
work, an unsupervised deep learning-based fusion method - HyCoNet - that can
solve the problems in HSI-MSI fusion without the prior PSF and SRF information
is proposed. HyCoNet consists of three coupled autoencoder nets in which the
HSI and MSI are unmixed into endmembers and abundances based on the linear
unmixing model. Two special convolutional layers are designed to act as a
bridge that coordinates with the three autoencoder nets, and the PSF and SRF
parameters are learned adaptively in the two convolution layers during the
training process. Furthermore, driven by the joint loss function, the proposed
method is straightforward and easily implemented in an end-to-end training
manner. The experiments performed in the study demonstrate that the proposed
method performs well and produces robust results for different datasets and
arbitrary PSFs and SRFs.
Related papers
- A Hybrid Registration and Fusion Method for Hyperspectral Super-resolution [0.913509220304172]
We propose a hybrid registration and fusion model named RAF-NLRGS.
The RAF model incorporates a constrained group sparsity to harness valuable information embedded in the residual data group.
We also present the framework of Generalized Gauss-Newton (GGN) algorithm and Proximal Alternating Optimization (PAO)
arXiv Detail & Related papers (2024-07-07T06:36:19Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Hyperspectral and Multispectral Image Fusion Using the Conditional
Denoising Diffusion Probabilistic Model [18.915369996829984]
We propose a deep fusion method based on the conditional denoising diffusion probabilistic model, called DDPM-Fus.
Experiments conducted on one indoor and two remote sensing datasets show the superiority of the proposed model when compared with other advanced deep learningbased fusion methods.
arXiv Detail & Related papers (2023-07-07T07:08:52Z) - Unsupervised Hyperspectral and Multispectral Images Fusion Based on the
Cycle Consistency [21.233354336608205]
We propose an unsupervised HSI and MSI fusion model based on the cycle consistency, called CycFusion.
The CycFusion learns the domain transformation between low spatial resolution HSI (LrHSI) and high spatial resolution MSI (HrMSI)
Experiments conducted on several datasets show that our proposed model outperforms all compared unsupervised fusion methods.
arXiv Detail & Related papers (2023-07-07T06:47:15Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.