ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion
- URL: http://arxiv.org/abs/2310.07255v1
- Date: Wed, 11 Oct 2023 07:30:37 GMT
- Title: ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion
- Authors: Jinghui Qin, Lihuang Fang, Ruitao Lu, Liang Lin, and Yukai Shi
- Abstract summary: Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
- Score: 54.668445421149364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based hyperspectral image (HSI) super-resolution, which aims to
generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image
(HSI) and multispectral image (MSI) with deep neural networks (DNNs), has
attracted lots of attention. However, neural networks require large amounts of
training data, hindering their application in real-world scenarios. In this
letter, we propose a novel adversarial automatic data augmentation framework
ADASR that automatically optimizes and augments HSI-MSI sample pairs to enrich
data diversity for HSI-MSI fusion. Our framework is sample-aware and optimizes
an augmentor network and two downsampling networks jointly by adversarial
learning so that we can learn more robust downsampling networks for training
the upsampling network. Extensive experiments on two public classical
hyperspectral datasets demonstrate the effectiveness of our ADASR compared to
the state-of-the-art methods.
Related papers
- Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hyperspectral Image Super-Resolution via Dual-domain Network Based on
Hybrid Convolution [6.3814314790000415]
This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet)
To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain.
To further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain.
arXiv Detail & Related papers (2023-04-10T13:51:28Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Robust Self-Ensembling Network for Hyperspectral Image Classification [38.84831094095329]
We propose a robust self-ensembling network (RSEN) to address this problem.
The proposed RSEN consists of twoworks including a base network and an ensemble network.
We show that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-08T13:33:14Z) - Hyperspectral Image Super-Resolution with Spectral Mixup and
Heterogeneous Datasets [99.92564298432387]
This work studies Hyperspectral image (HSI) super-resolution (SR)
HSI SR is characterized by high-dimensional data and a limited amount of training examples.
This exacerbates the undesirable behaviors of neural networks such as memorization and sensitivity to out-of-distribution samples.
arXiv Detail & Related papers (2021-01-19T12:19:53Z) - DML-GANR: Deep Metric Learning With Generative Adversarial Network
Regularization for High Spatial Resolution Remote Sensing Image Retrieval [9.423185775609426]
We develop a deep metric learning approach with generative adversarial network regularization (DML-GANR) for HSR-RSI retrieval.
The experimental results on the three data sets demonstrate the superior performance of DML-GANR over state-of-the-art techniques in HSR-RSI retrieval.
arXiv Detail & Related papers (2020-10-07T02:26:03Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.