Biot-Savart law in quantum matter
- URL: http://arxiv.org/abs/2007.14017v1
- Date: Tue, 28 Jul 2020 06:49:16 GMT
- Title: Biot-Savart law in quantum matter
- Authors: X. M. Yang and Z. Song
- Abstract summary: We show that each loop as a degeneracy line generates a polarization field, obeying the Biot-Savart law.
Applying the Ampere's circuital law on a nontrivial topological system, we find that two Bloch knots entangle with each other, forming a link with the linking number.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the topological nature of a class of lattice systems, whose Bloch
vector can be expressed as the difference of two independent periodic vector
functions (knots) in an auxiliary space. We show exactly that each loop as a
degeneracy line generates a polarization field, obeying the Biot-Savart law:
The degeneracy line acts as a current-carrying wire, while the polarization
field corresponds to the generated magnetic field. Applying the Ampere's
circuital law on a nontrivial topological system, we find that two Bloch knots
entangle with each other, forming a link with the linking number being the
value of Chern number of the energy band. In addition, two lattice models, an
extended QWZ model and a quasi-1D model with magnetic flux, are proposed to
exemplify the application of our approach. In the aid of the Biot-Savart law,
the pumping charge as a dynamic measure of Chern number is obtained numerically
from quasi-adiabatic processes.
Related papers
- Topological Solitons in Square-root Graphene Nanoribbons Controlled by Electric Fields [34.82692226532414]
Graphene nanoribbons (GNRs) have unique topological properties induced and controlled by an externally applied electric field.
We show different topological phases can be achieved by controlling the direction of the field and the chemical potential of the system in square-root GNRs.
arXiv Detail & Related papers (2024-06-20T03:58:24Z) - A Quantized Interband Topological Index in Two-Dimensional Systems [3.980928498919734]
We introduce a novel gauge-invariant, quantized interband index in two-dimensional (2D) multiband systems.
We confirm its topological nature by numerically demonstrating a one-to-one correspondence to the valley Chern number.
We derive a band-resolved topological charge and demonstrate that it can be used to investigate the nature of edge states due to band inversion in valley systems like multilayer graphene.
arXiv Detail & Related papers (2023-07-31T17:59:03Z) - Isomorphism between the Bialynicki-Birula and the Landau-Peierls Fock
space quantization of the electromagnetic field in position representation [0.0]
We first present a summary of the quantization of the electromagnetic field in position space representation.
We use two main approaches: the Landau-Peierls approach in the Coulomb gauge and the Bialynicki-Birula approach.
We show that the two approches are completly equivalent.
arXiv Detail & Related papers (2022-12-12T12:26:12Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - Electron vortex beams in non-uniform magnetic fields [0.0]
We consider the quantum theory of paraxial non-relativistic electron beams in non-uniform magnetic fields, such as the Glaser field.
We find the wave function of an electron from such a beam and show that it is a joint eigenstate of two ($z$-dependent) commuting gauge-independent operators.
arXiv Detail & Related papers (2020-11-23T21:10:02Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.