Quantum vibrational mode in a cavity confining a massless spinor field
- URL: http://arxiv.org/abs/2209.05074v1
- Date: Mon, 12 Sep 2022 08:21:12 GMT
- Title: Quantum vibrational mode in a cavity confining a massless spinor field
- Authors: Alessandro Ferreri
- Abstract summary: We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
- Score: 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyse the reaction of a massless (1+1)-dimensional spinor field to the
harmonic motion of one cavity wall. In our model, the oscillation amplitude of
the harmonic oscillator is promoted to a quantum operator, providing the system
with an additional quantum degree of freedom having bosonic nature. After
obtaining the interaction Hamiltonian, we estimate the correction to both the
ground state and its energy. We demonstrate that the system is able to convert
bosons into fermion pairs at the lowest perturbative order. Extension of our
model to multiple bags is contemplated.
Related papers
- Pseudo-Hermitian extensions of the harmonic and isotonic oscillators [9.944647907864256]
We describe certain pseudo-Hermitian extensions of the harmonic and isotonic oscillators.
We explicitly solve for the wavefunctions in the position representation and also explore their intertwining relations.
arXiv Detail & Related papers (2024-08-02T17:15:17Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - On the equivalence of the Pais-Uhlenbeck oscillator model and two
non-Hermitian Harmonic Oscillators [0.0]
We present the construction of the path integral, generating functionals and vacuum persistence amplitudes for PT-symmetry completed systems.
We discuss some implications to Quantum Field Theory and Particle Physics.
arXiv Detail & Related papers (2023-02-27T16:36:56Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems: insights on the second excitation manifold [0.0]
This work contrasts predictions from the Tavis-Cummings (TC) model, in which the material is a collection of two-level systems.
We simplify the brute-force diagonalization of a gigantic $N2times N2$ Hamiltonian.
We find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced.
arXiv Detail & Related papers (2022-02-03T06:33:42Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.