論文の概要: Anomaly detection in Context-aware Feature Models
- arxiv url: http://arxiv.org/abs/2007.14070v1
- Date: Tue, 28 Jul 2020 08:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 02:36:40.445855
- Title: Anomaly detection in Context-aware Feature Models
- Title(参考訳): 文脈認識特徴モデルにおける異常検出
- Authors: Jacopo Mauro
- Abstract要約: 文脈認識特徴モデルにおける異常解析を形式化する。
SATソルバへの繰り返し呼び出しに頼ることなく,QBFソルバを用いて異常を検出する方法を示す。
- 参考スコア(独自算出の注目度): 1.0660480034605242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature Models are a mechanism to organize the configuration space and
facilitate the construction of software variants by describing configuration
options using features, i.e., a name representing a functionality. The
development of Feature Models is an error prone activity and detecting their
anomalies is a challenging and important task needed to promote their usage.
Recently, Feature Models have been extended with context to capture the
correlation of configuration options with contextual influences and user
customizations. Unfortunately, this extension makes the task of detecting
anomalies harder. In this paper, we formalize the anomaly analysis in
Context-aware Feature Models and we show how Quantified Boolean Formula (QBF)
solvers can be used to detect anomalies without relying on iterative calls to a
SAT solver. By extending the reconfigurator engine HyVarRec, we present
findings evidencing that QBF solvers can outperform the common techniques for
anomaly analysis.
- Abstract(参考訳): 機能モデルは、機能、すなわち機能を表す名前を使用して構成オプションを記述することにより、構成空間を整理し、ソフトウェア変種の構築を容易にするメカニズムである。
機能モデルの開発は、エラーを起こしやすいアクティビティであり、その異常を検出することは、その使用を促進するのに、困難で重要なタスクである。
近年、コンテクストモデルが拡張され、コンフィグレーションオプションとコンフィグレーションの影響とユーザのカスタマイズとの相関を捉えるようになった。
残念ながら、この拡張は異常を検出する作業を難しくする。
本稿では,文脈対応特徴モデルにおける異常解析を形式化し,SATソルバへの反復呼び出しに頼ることなく,量子ブール式(QBF)を用いて異常を検出する方法を示す。
再構成エンジンHyVarRecを拡張して,QBFソルバが異常解析の一般的な手法より優れていることを示す。
関連論文リスト
- Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
視覚言語基礎モデルは、画像とテキストのペアデータに拡張性があるため、多数の下流タスクで顕著な成功を収めている。
しかし、これらのモデルは、決定ショートカットの結果、きめ細かな画像分類などの下流タスクに適用した場合に重大な制限を呈する」。
論文 参考訳(メタデータ) (2024-03-01T09:01:53Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
我々は,通常のデータのみにアクセス可能な場合に,複数のクラスに属するオブジェクトから異常を検出する統一モデルを開発した。
まず、生成的アプローチについて検討し、再構成のための潜伏拡散モデルについて検討する。
「拡散モデルの入力特徴空間を修正し、アイデンティティショートカットをさらに緩和する特徴編集戦略を導入する。」
論文 参考訳(メタデータ) (2023-07-16T14:41:22Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
我々は,2つの一般的な説明手法(Occlusion と Shapley の値)に対して,モデルに依存しない実装を提供し,その複雑なモデルにおいて,完全に異なる属性を強制する。
提案手法は,修正された説明に基づいてトレーニングデータセットを増強することで,モデルの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-28T15:23:28Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Top-$k$ Regularization for Supervised Feature Selection [11.927046591097623]
教師付き特徴選択のための新しい,シンプルで効果的な正規化手法である Top-k$ regularization を導入する。
上位$kの正規化は、教師付き特徴選択に有効で安定であることを示す。
論文 参考訳(メタデータ) (2021-06-04T01:12:47Z) - DirectDebug: Automated Testing and Debugging of Feature Models [55.41644538483948]
変数モデル(例えば、特徴モデル)は、ソフトウェアアーティファクトの変数と共通性を表現する一般的な方法である。
複雑でしばしば大規模な機能モデルは欠陥になりうる、すなわち、ソフトウェアアーチファクトの期待される変動特性を表現しない。
論文 参考訳(メタデータ) (2021-02-11T11:22:20Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
ビデオ異常は、モーション表現、オブジェクトのローカライゼーション、アクション認識など、多くのサブタスクを解決するため、困難なタスクである。
伝統的に、この課題に対する解決策は、これらの特徴の空間的接続を無視しながら、ビデオフレームとその低次元特徴のマッピングに焦点を当ててきた。
最近のソリューションでは、K-Meansのようなハードクラスタリング技術を用いてこれらの空間的接続を分析することや、潜伏した特徴を一般的な理解にマップするためにニューラルネットワークを適用することに焦点を当てている。
潜在特徴空間における映像異常を解決するために,このタスクを密度推定問題に転送するための深い確率モデルを提案する。
論文 参考訳(メタデータ) (2020-12-02T19:16:22Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。