Langevin Monte Carlo: random coordinate descent and variance reduction
- URL: http://arxiv.org/abs/2007.14209v8
- Date: Thu, 7 Oct 2021 14:07:11 GMT
- Title: Langevin Monte Carlo: random coordinate descent and variance reduction
- Authors: Zhiyan Ding and Qin Li
- Abstract summary: Langevin Monte Carlo (LMC) is a popular Bayesian sampling method.
We investigate how to enhance computational efficiency through the application of RCD (random coordinate descent) on LMC.
- Score: 7.464874233755718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Langevin Monte Carlo (LMC) is a popular Bayesian sampling method. For the
log-concave distribution function, the method converges exponentially fast, up
to a controllable discretization error. However, the method requires the
evaluation of a full gradient in each iteration, and for a problem on
$\mathbb{R}^d$, this amounts to $d$ times partial derivative evaluations per
iteration. The cost is high when $d\gg1$. In this paper, we investigate how to
enhance computational efficiency through the application of RCD (random
coordinate descent) on LMC. There are two sides of the theory:
1 By blindly applying RCD to LMC, one surrogates the full gradient by a
randomly selected directional derivative per iteration. Although the cost is
reduced per iteration, the total number of iteration is increased to achieve a
preset error tolerance. Ultimately there is no computational gain;
2 We then incorporate variance reduction techniques, such as SAGA (stochastic
average gradient) and SVRG (stochastic variance reduced gradient), into
RCD-LMC. It will be proved that the cost is reduced compared with the classical
LMC, and in the underdamped case, convergence is achieved with the same number
of iterations, while each iteration requires merely one-directional derivative.
This means we obtain the best possible computational cost in the
underdamped-LMC framework.
Related papers
- MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning.
Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions.
We study a more general and realistic class of generalized $ell$-smooth loss functions, where $ell$ is a general non-decreasing function of gradient norm.
arXiv Detail & Related papers (2024-05-29T18:36:59Z) - Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - A Variance Controlled Stochastic Method with Biased Estimation for
Faster Non-convex Optimization [0.0]
We propose a new technique, em variance controlled gradient (VCSG), to improve the performance of the reduced gradient (SVRG)
$lambda$ is introduced in VCSG to avoid over-reducing a variance by SVRG.
$mathcalO(min1/epsilon3/2,n1/4/epsilon)$ number of gradient evaluations, which improves the leading gradient complexity.
arXiv Detail & Related papers (2021-02-19T12:22:56Z) - Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence [8.873449722727026]
We show that the rate estimate $widetildemathcalO(depsilon-1)$ improves the previously known rates in both of these metrics.
In particular, for convex and firstorder smooth potentials, we show that LMC algorithm achieves the rate estimate $widetildemathcalO(depsilon-1)$ which improves the previously known rates in both of these metrics.
arXiv Detail & Related papers (2020-07-22T18:18:28Z) - Variance reduction for Random Coordinate Descent-Langevin Monte Carlo [7.464874233755718]
Langevin Monte Carlo (LMC) that provides fast convergence requires computation of gradient approximations.
In practice one uses finite-differencing approximations as surrogates, and the method is expensive in high-dimensions.
We introduce a new variance reduction approach, termed Coordinates Averaging Descent (RCAD), and incorporate it with both overdamped and underdamped LMC.
arXiv Detail & Related papers (2020-06-10T21:08:38Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Differentially Quantized Gradient Methods [53.3186247068836]
We show that Differentially Quantized Gradient Descent (DQ-GD) attains a linear contraction factor of $maxsigma_mathrmGD, rhon 2-R$.
No algorithm within a certain class can converge faster than $maxsigma_mathrmGD, 2-R$.
arXiv Detail & Related papers (2020-02-06T20:40:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.