論文の概要: End-to-End Adversarial White Box Attacks on Music Instrument
Classification
- arxiv url: http://arxiv.org/abs/2007.14714v1
- Date: Wed, 29 Jul 2020 09:52:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 21:08:12.197526
- Title: End-to-End Adversarial White Box Attacks on Music Instrument
Classification
- Title(参考訳): 楽器分類における敵対的ホワイトボックス攻撃
- Authors: Katharina Prinz (1) and Arthur Flexer (1) ((1) Johannes Kepler
University Linz)
- Abstract要約: 本報告では,楽器分類システムに対するエンド・ツー・エンド・エンド・アタックについて述べる。
我々の攻撃は、ランダムなベースラインに近い精度を低下させると同時に、摂動をほとんど認識不能にし、任意の機器に誤分類を発生させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small adversarial perturbations of input data are able to drastically change
performance of machine learning systems, thereby challenging the validity of
such systems. We present the very first end-to-end adversarial attacks on a
music instrument classification system allowing to add perturbations directly
to audio waveforms instead of spectrograms. Our attacks are able to reduce the
accuracy close to a random baseline while at the same time keeping
perturbations almost imperceptible and producing misclassifications to any
desired instrument.
- Abstract(参考訳): 入力データの小さな逆摂動は、機械学習システムの性能を劇的に変化させ、そのようなシステムの妥当性に挑戦することができる。
本稿では,楽器分類システムにおいて,スペクトルではなく音声波形に直接摂動を付加できる最初のエンドツーエンドの敵攻撃について述べる。
我々の攻撃は、乱数ベースラインに近い精度を低減できると同時に、摂動をほとんど知覚できない状態に保ち、所望の機器に誤分類を生じさせることができる。
関連論文リスト
- Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Music Instrument Classification Reprogrammed [79.68916470119743]
プログラム」とは、事前学習されたモデルの入力と出力の両方を修正・マッピングすることで、もともと異なるタスクをターゲットにした、事前学習された深層・複雑なニューラルネットワークを利用する手法である。
本研究では,異なるタスクで学習した表現のパワーを効果的に活用できることを実証し,結果として得られた再プログラムシステムは,訓練パラメータのごく一部で,同等あるいはそれ以上の性能を持つシステムでも実行可能であることを実証する。
論文 参考訳(メタデータ) (2022-11-15T18:26:01Z) - Physical Passive Patch Adversarial Attacks on Visual Odometry Systems [6.391337032993737]
本研究では,視覚計測に基づく自律ナビゲーションシステムに対するパッチ対向攻撃について検討する。
本研究では,現場にパッチ対向攻撃を配置することにより,視覚計測モデルの誤差マージンを著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-07-11T14:41:06Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Universal Adversarial Attack on Deep Learning Based Prognostics [0.0]
本稿では,不当な回帰に基づくRUL予測モデルに対する特別な知覚不可能な雑音である,普遍的対向摂動の概念を提案する。
入力データの任意のインスタンスに普遍的逆摂動を加えると、モデルが予測した出力の誤差が増加することを示す。
さらに, 摂動強度の変動がRUL予測モデルに与える影響を実証し, 摂動強度の増加に伴いモデル精度が低下することを示した。
論文 参考訳(メタデータ) (2021-09-15T08:05:16Z) - Time-Frequency Scattering Accurately Models Auditory Similarities
Between Instrumental Playing Techniques [5.923588533979649]
音色知覚は楽器や演奏技術だけで提供されるものよりも柔軟な分類法で機能することを示す。
本稿では,楽器,ミュート,技法間の類似性のクラスタグラフを復元するマシンリスニングモデルを提案する。
論文 参考訳(メタデータ) (2020-07-21T16:37:15Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。